
1

Combinatorial SolidGeometry,

BoundaryRepresentations,

andNon-ManifoldGeometry

Michael John Muuss and Lee A. Butler

Abstract

The history of solid modeling is reviewed. Both traditional combinatorial

solid geometry (CSG) systems and traditional boundary representation (B-

rep) solid modeling systems are considered. CSG models are formed by the

boolean combination of \primitive" solids. Only the unevaluated CSG tree

is stored, rather than an explicit representation of the �nal surfaces. Many

applications would like an approximation of these complex CSG shapes ex-

pressed as a collection of planar N-gons. This paper focuses on a technique

for computing approximate three dimensional surface tessellations. So far,

B-rep solid modelers have used variations on the winged-edge data struc-

ture. The winged-edge data structure can only describe manifold shapes,

limiting these systems to manifold geometry. While not restricting the set

of manufacturable parts, this has made implementing boolean operations on

these B-rep models more di�cult.

Boolean operations and other useful modeling operations can be much

more easily implemented using a representation that permits non-manifold

topology to be expressed directly. A detailed look is taken at the radial-edge

data structure and how it represents non-manifold conditions. While several

previous publications describe the general nature of algorithms required to

perform boolean operations on non-manifold geometry, details are sparse.

This report describes the necessary algorithms in detail.

Some of the systems analysis issues that can result from integrating non-

manifold B-rep geometry into a hybrid CSG solid modeling system are dis-

cussed. Of particular note are the speci�cation of tessellation tolerancing,

the implementation of robust tessellation, the di�culties of carrying dual

representations of objects, ray-tracing non-manifold B-rep solids, using the

B-rep for driving high-performance polygon rendering hardware, and inter-

facing to facet-based analysis codes.

To appear in Advanced Computer Graphics Techniques, ed. Rogers and Earn-

shaw, Springer-Verlag.

2 Michael John Muuss and Lee A. Butler

A History of Solid Modeling

The digital computer provides the opportunity for nearly in�nite variety

in the representation of information within it. The design of complex,

expensive objects is always an area ripe for technological improvements,

and with the emergence of graphics displays, computer aided design (CAD)

packages began to appear. Designers of early CAD packages focused their

e�orts on the most tedious, time-consuming, and unrewarding aspect of

conventional design: the process of converting a designer's sketches and

notes into �nished engineering drawings { the drafting process. Thus, initial

CAD systems replicated traditional two-dimensional drafting techniques.

Only modest gains in e�ciency were possible in creating the �rst version

of a design, but tremendous gains were realized when design modi�cations

were needed, because the computer can retain and redraw the unchanged

portions of the drawing.

Once a computer aided drafting system has been used to create a com-

puter representation of a design, the designer (and his management) is often

tempted to expect more out of the computer system than simple drawings.

One would expect that a representation that depicted the boundaries of an

object from several views would provide su�cient information for comput-

ing a whole variety of useful facts about the model, such as center of mass,

volume, cross-sectional area, etc. Two-dimensional drafting systems were

not designed for this sort of interrogation.

Four major types of di�culties have plagued wireframe systems. First,

the user is required to supply a large amount of information, often at a

very low level. Because of the drafting heritage, some of this information

may be \construction lines" that do not actually contribute to the ultimate

shape of any object. Second, because the user is providing such low-level

information, it is easy to de�ne objects which cannot be physically realized

due to non-closed faces and dangling lines. Third, it is possible to construct

a wireframe which has ambiguous interpretations from di�erent views. Fi-

nally, wireframe models may include view-speci�c lines representing false

edges such as pro�le lines and silhouettes [REQU82]. Engineering draw-

ings are suitable only for interpretation by human beings, not for automatic

computerized analysis.

As a new product is being designed, there are generally two or more

di�erent kinds of engineering analyses that need to be performed, such as

structural analysis, thermal analysis, computational
uid dynamics (CFD),

and vulnerability analysis, as well as the calculation of predictive optical,

radar, infra-red (IR), and X-ray images or \signatures". Therefore, com-

puterized drawings cannot be used to provide the geometric input required

for these analysis codes. These requirements have focused attention on the

evolution of an entirely di�erent approach to representing objects: solid

models.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 3

What is a solid model?

A solid model [MUUS87a] is a computer description of closed, solid, three

dimensional shapes represented by an analytical framework within which

the three dimensional material can be completely and unambiguously de-

�ned [DEIT83]. Solid models di�er from drafting-type systems in several

important ways: objects are composed of combinations of primitive objects

(some quite complex), each of which is complete, unambiguous, physically

realizable, and modi�able. Because these properties hold for the primitive

objects, they hold for any boolean combinations of them as well.

Completeness is assured because the representation contains a full de-

scription of a piece of solid matter; there is no view-speci�c information.

Because the solid matter is completely described, there is no possibility

for ambiguity. For primitive solids de�ned by specifying parameters to

an analytic function, there is no possibility of having missing faces, loose

edges, or other similar defects. Systems which o�er boundary represen-

tations as primitive solids must carefully validate each such solid when it

is created. A solid model is always amenable to further modi�cation by

boolean combination with other shapes.

These properties guarantee that all the spatial information necessary for

any subsequent analysis is directly available from the model representation.

Object structure and material properties can be computed at any arbitrary

point in the model at any time. Therefore, solid modeling technology is

particularly suited to the automation of many manufacturing and analysis

tasks.

Wireframes

Applications I/F

Optical

V/L

Rays

X-Ray

Radar

Plots

Shotlines

Editing

Output

Analysis

User

Editor

Graphics

Database

Geometry

Figure 1 { The Design Loop

4 Michael John Muuss and Lee A. Butler

The Design Loop

Solid models are very useful for generating drawings or pictures of the

modeled object from any viewpoint. This capability alone usually pays for

the cost of developing the model. However, the solid model has a much

larger role in the design process than simply automating the production

of pictures and engineering drawings. Properly utilized, the solid model

becomes the central element in the iterative process of taking a design from

idea to prototype design to working design to optimized design. The model

can be subjected to numerous engineering analyses, allowing the e�ects of

varying many parameters to be studied in a controlled and automatic way.

This iterative process is termed the \design loop", and is illustrated in

Figure 1.

In a full scale solid modeling system, there is no need for initial draw-

ings: the designer expresses the initial structures directly into the modeling

system's editor, just as a modern author creates his \rough draft" directly

into a word processor. At the completion of each version of the design, the

model is subjected to a battery of analyses appropriate to the function of

the object being designed. Strength, volume, weight, level of protection,

and other similar evaluations can be reported, along with the production of

a variety of images and/or drawings. These automated analyses help iden-

tify weaknesses or de�ciencies in a design early in the design process. By

detecting
aws early, the designer has the opportunity to correct his plans

before having invested too much time in a bad design, or the designer can

switch to an entirely di�erent approach which may seem more promising

than the original one.

In this way, the solid modeling system allows the designer to concentrate

on the important, creative aspects of the design process. Freeing the de-

signer of routine analysis permits designs to be �nished in less time than

previously required, or allows much more rigorously optimized designs to

be delivered in comparable timeframes and at the same cost as unopti-

mized designs created using older techniques [DEIT85]. Furthermore, the

modeling system allows sweeping design changes to be made quickly and

cheaply, allowing great
exibility in the face of ever changing requirements

and markets. The time needed to create a new product can be further de-

creased by re-utilizing elements of earlier models and then modifying them

as appropriate. If an existing component already in inventory is entirely

suitable for use in a new design, signi�cant manufacturing and inventory

savings will be realized. A highly interactive modeling system can allow

full designs to be completed in a matter of days, where weeks or months

may have previously been required [DEIT82].

Thus, the real payo� from building a solid geometric model comes when

it is time to analyze it. This capability is so powerful that it ordinarily

justi�es any extra time or equipment investments needed to support the

construction of the three dimensional solid model. Allowing the designer

the opportunity to explore and analyze more design options will allow the

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 5

development of the highest quality product, while also improving the work

environment of the designer by eliminating boring, repetitive tasks.

Model representations

Two major families of solid model representations exist, each with several

unique advantages. The �rst representation, developed by MAGI under

contract to the Ballistic Research Lab (BRL) in the early 1960s [MAGI67],

is the combinatorial solid geometry representation (CSG-rep). Solid models

of this type are expressed as boolean combinations of primitive solids. Each

primitive solid is a geometric entity described by some set of parameters

that occupies a �xed volume in space.

The simplest solid that can be used is the halfspace [REQU82], de�ned

by the in�nite plane ax + by + cz + d = 0 plus all points on one side of

that plane. Systems which de�ned all objects in terms of Boolean com-

binations of halfspaces include SHAPES [LANI79] and TIPS-1 [OKIN78].

While this choice of representation limits these systems to modeling convex

objects with planar faces, and excludes smooth objects (or forces them to

be approximated), the simplicity of this representation lends itself to very

natural processing by VLSI hardware [KEDE85a, KEDE85b]. Most CSG-

rep systems in use today o�er quite a variety of primitive solids, ranging

from various types of spheres and ellipsoids, boxes and cones, and solids

de�ned by swept or extruded curves.

The alternative to describing solids with primitives is to adopt a bound-

ary representation (B-rep), of which there are two sub-types: the explicit

and implicit boundary representations. In an explicit boundary representa-

tion, each solid is described by an explicit speci�cation of all the points on

the surface of the solid, typically by exhaustively listing the vertices of many

planar facets. Alternatively, there are implicit boundary representations,

where the surface of the solid is described by an analytic function such as

Coons patches [COON67], Bezier patches [BEZI74], splines [deBO78], etc.

Boundary representations o�er the advantage of being able to naturally

model solid objects with arbitrarily shaped surfaces, but can require a large

amount of information to achieve acceptable results. Both CSG-reps and

B-reps have certain advantages. With only the traditional CSG primitives,

it can be exceedingly di�cult and non-intuitive to attempt to describe

sculptured, free-form surfaces as a boolean combination of primitives. But

similarly, implementing powerful modeling operations like boolean inter-

section and boolean di�erences on the fundamental representation itself

can be di�cult with pure boundary representations. Many current B-rep

modelers implement boolean operations as an external post-processing op-

eration, because current schemes to evaluate Boolean operations are not

closed. As an example of this, B-spline \ B-spline might result in polygons

rather than another B-spline. In a boundary representation closed under

the set of boolean operations, B-rep \ B-rep ! B-rep. Thus, pure B-rep

6 Michael John Muuss and Lee A. Butler

systems may be di�cult to use for some types of objects, especially those

with sculptured surfaces pierced by sharp rectangular gouges [THOM84].

Even though existing systems are often considered as being purely CSG-

rep or B-rep, the reality is that many production CAD systems are actually

hybrids of the two approaches, o�ering the designer the choice of primitive

solids or boundary representations, as appropriate for each task. In prac-

tice, the implementation of the CSG-rep and B-rep portions of the software

may be quite di�erent, but at the highest level of abstraction each repre-

sentation is just a di�erent way of viewing the other. Faceted primitives

such as boxes and wedges can be thought of as explicit B-reps, and smooth

primitives such as spheres and cones can be thought of as implicit B-reps

de�ned by analytic functions.

Interrogating a Solid Model

For more than thirty years, solid geometric modeling methods have been

used to support engineering design and analyses [MAGI67, DEIT82,

DEIT84a]. In such item-level studies geometry and material informa-

tion are passed to various application codes to derive certain measures-

of-performance. This is commonly done in structural analysis, thermal

analysis, computational
uid dynamics (CFD), and vulnerability analy-

sis. Building on the general paradigm, the techniqsues have been extended

to support many predictive signature models [DEIT84b] including optical,

millimeter wave (MMW), infra-red (IR), magnetic and X-ray signature gen-

eration tools. It is important to note that this type of predictive analysis

must generally be supported by a solid geometric model.

The objective of a given application will to a large degree determine

the most \natural" form in which the model might be presented. For

example, a representation of just the edges of the objects in a model would

be suitable for a program attempting to construct a wire-frame display

of the model. There exists another family of applications which must be

able to �nd the intersection of small object paths (e.g., photons) with the

model. Generally, these alternatives are motivated by the representation

of a physical process being simulated, and each alternative is useful for a

whole family of applications.

Unfortunately, it is not often the case that building only one three di-

mensional model of the product is enough. Each of the di�erent engineering

analysis software packages needed to perform the analyses usually requires

a di�erent form of input. As a result, more than one kind of geometric

model may have to be constructed. However, rarely do these application

codes read the three-dimensional geometry and material data base directly.

Rather, each application has a speci�c interrogation method that is invoked

to obtain geometric and material attributes from a source or reference �le.

The physical simulation techniques used in the application software are

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 7

Triang

Database

Geometry

Output

Analysis

Shotlines

Plots

Editing

X-Ray

Radar

V/L

Optical

Applications I/F

Rays WireframesNMG FEM Mesh

CFD

Structure

Blast

AcousticRadar

Visualize

Thermal/IR

Figure 2 { The Applications Interface

therefore constrained by the available techniques for extracting geometric

information from the model. Each analysis package often requires a unique

form of input. Without a central geometry database that can drive all the

analysis packages, the designer can be forced into having to create many

di�erent representations of each design, one for each distinctly di�erent

type of analysis code. This can be very costly and time consuming. The

time needed to create a single model ranges between one man-week and

several man-years, depending on the complexity of the design. Having to

spend the e�ort to manually create the same design in di�erent formats to

drive several analysis codes is an unfortunate and expensive necessity.

The philosophy adopted in the BRL-CAD Package [MUUS87c,

MUUS88a] has been to develop a broad set of analysis codes which access

the same geometry database [DEIT84b]. These analyses cover the spec-

trum from engineering decision aids, to design validators, to signature pre-

diction codes, to the generation of wireframe drawings, to high-resolution

image generation for management comprehension and sales advantage. Key

analysis capabilities have been developed to assess the strength, weight,

protection, and performance levels o�ered by the structures represented

by a solid model. Using this analysis information and additional domain-

speci�c applications tools makes it possible to produce highly detailed de-

signs constructed with a philosophy of system optimization right from the

start [DEIT88]. This facilitates the rapid development of products with

the desired levels of performance at the best attainable price.

8 Michael John Muuss and Lee A. Butler

To accomplish all these goals, the BRL-CAD Package provides a vari-

ety of procedural interfaces so that the diverse collection of analysis codes

can be driven from a single, central geometric model [MUUS90b]. These

procedural interfaces follow the natural object-oriented programming inter-

face. An application program retrieves one or more objects from the model

database, and then requests those objects to either interrogate themselves

in the desired way, or to convert themselves into the desired representa-

tion. This applications interface is depicted in Figure 2. The software is

designed to be highly portable to di�erent hardware architectures, plat-

forms and environments, and is implemented using the C programming

language [RITC78b] running on the UNIX

tm

operating system [RITC78a].

Wireframe Representation

The interactive model editor mged program employs three dimensional

wireframe outlines of the various solid objects in order to maintain the

highest possible speed of user interaction. In addition to the primary use in

supporting interactive geometry viewing and modi�cation, wireframes are

also useful for visualizing complex analysis results. A particularly powerful

form of this is to create a color display of the output of an analysis code

(for example, temperature distribution across the surface of an object), and

then overlay the analysis data with a wireframe drawing of the geometry.

Wireframes are also very useful for the previewing of animation sequences.

The conversion of database objects into wireframe drawings is the simplest

of the application interfaces, and is very easy for the application program

to utilize.

After the user speci�es which objects from the model database should be

displayed, mged retrieves the necessary database records and invokes the

ft plot() interface provided by librt. ft plot() passes the database object

to the appropriate object-speci�c wireframe converter, which generates a

wireframe outline of that object. The wireframe is composed of a collec-

tion of three dimensional virtual pen-plotter move and draw operations,

returned to the application as a linked list of vlist structures attached

to the application provided vlhead structure. Each vlist structure has

three elements, vl pnt, the XYZ coordinates of a point in space, vl draw,

a
ag which indicates whether the virtual pen should be moved invisibly

from the current position to vl pnt (vl draw= VL CMD LINE MOVE) or

moved visibly, drawing a line from the current position to vl pnt (vl draw=

VL CMD LINE DRAW).

Ray Tracing

Many phenomena that are ordinarily di�cult to model can be handled

simply and elegantly with ray-tracing. For example, an illumination model

based on ray-tracing �rst �res a ray from the eye plane into the model

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 9

geometry. To approximate the total amount of light at that point in the

model, the algorithm simply �res a ray at each light source and sums the

contributions from visible light sources. Ray-tracing also makes it easy to

deal with objects that are partly or entirely re
ective, and with transparent

objects that have varying refractive indices. Furthermore, by applying the

proper sorts of dither [COOK84], motion-blur, shadow penumbra, depth-

of-�eld, translucency, and other e�ects are easily achieved.

The power of the lighting model can be further extended by making a

provision to record the paths of all the rays followed when computing the

light intensity for each pixel in an auxiliary �le. This capability allows

one to follow the path of the light rays passing through lenses re
ecting

from mirrors while performing image rendering, with no additional com-

putation. Studying the paths of light rays as they are repeatedly bent by

passing from air to glass and back again has traditionally been a painstaking

manual procedure for lens designers. By modeling, it becomes possible to

predict lens behavior, including making a determination of the exact focal

length, �nding the precise in
uence of spherical distortions and edge ef-

fects, determining the amount of image distortion due to internal re
ection

and scattering, and �nding the level of re
ections from the lens mounting

hardware. Furthermore, experiments can be conducted to determine the

e�ects of adding or removing ba�es, irises, special lens coatings, etc.

Rays begin at a point

~

P , and proceed in�nitely in a given direction

~

D. The direction vector or direction cosines for the ray (

~

D

x

;

~

D

y

;

~

D

z

) are

the cosines of the angle between the ray and each of the Cartesian axes.

This vector

~

D is of unit length, i.e. j

~

Dj = 1. Any point

~

A on a ray

may be expressed as a linear combination of

~

P and

~

D by the formula

~

A =

~

P + t �

~

D where valid values for t are in the range [0; 1).

The traditional approach to ray-tracing has been batch-oriented, with

the user de�ning a set of \viewing angles", initiating a large batch job to

compute all the ray intersections, and then post-processing all the ray data

into some meaningful form. However, the major drawback of this approach

is that the application has no immediate control over ray paths, making

another batch run necessary for each level of re
ection, etc.

In order to be successful, applications need: (1) interactive control of ray

paths, to naturally implement re
ection, refraction, and fragmenting into

multiple subsidiary rays, and (2) the ability to �re rays in arbitrary di-

rections from arbitrary points. Nearly all non-batch implementations have

closely coupled a speci�c application (typically a model of illumination)

with the ray-tracing code, allowing e�cient and e�ective control of the

ray paths. The most
exible approach of all is to provide the ray-tracing

capability through a general-purpose library, and make the functionality

available to any application as needed. For example, the decision of when

a ray should be re
ected, transmitted, or absorbed should be entirely under

the control of the application program.

10 Michael John Muuss and Lee A. Butler

LIBRT Library Interface

The third generation ray-tracing capability in the BRL-CAD Package

is a set of library routines in librt to allow application programs to in-

tersect rays with model geometry. There are two parts to the interface:

\preparation" routines and the actual ray-tracing routine. rt dirbuild()

opens the database �le, and builds the in-core database table of contents.

rt gettree() adds a database sub-tree to the active model space, and can

be called multiple times to join di�erent parts of the database together.

To compute the intersection of a ray with the geometry in the active

model space, the application must call rt shootray() once for each ray.

Ray behaviors such as perspective, re
ection, refraction, etc, are entirely

determined by the applications program logic, and not by the ray-tracing

library. The ray-path speci�cation determined by the applications program

is passed as a parameter to rt shootray() in the application structure,

which contains �ve major elements: the vector a ray.r pt (

~

P) which is the

starting point of the ray, the vector a ray.r dir (

~

D) which is the unit-length

direction vector, the pointer *a hit() to an application-provided routine

to be called when some geometry is hit by the ray, the pointer *a miss()

to an application-provided routine to be called when the ray does not hit

any geometry, and the variable a onehit. In addition, there are various

locations for applications to store state information such as recursion level,

intermediate color values, and cumulative ray distance.

When the a onehit variable is set to zero, the ray is traced through

the entire model. Applications such as lighting models may often only be

interested in the �rst object hit; in this case, a onehit may be set to the

value one to stop ray-tracing as soon as the ray has intersected at least one

piece of geometry. Similarly, if only the �rst three hits are required (such

as in the routine that refracts light through glass), then a onehit may be

given the value of three. Then, at most three hit points will be returned,

an in-hit, an out-hit, and a subsequent in-hit. When only a limited number

of intersections are required, the use of this
ag can provide a signi�cant

savings in run-time.

The rt shootray() function is designed for full recursion so that the ap-

plication provided a hit()/a miss() routines can themselves �re additional

rays by recursively calling rt shootray() before deciding their own return

value. In addition, the function rt shootray() is fully capable of operating

in parallel with other instances of itself in the same address space, allowing

the application to take advantage of parallel hardware capabilities where

such exist.

A simple application program that �res one ray at a model and prints

the result is included below, to demonstrate the simplicity of the interface

to librt.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 11

struct application ap;

struct rt_i *rtip;

main() {

rtip = rt_dirbuild(``model.g'');

rt_gettree(rtip, ``car'');

rt_prep(rtip);

VSET(ap.a_point, 100, 0, 0);

VSET(ap.a_dir, -1, 0, 0);

ap.a_hit = &hit_geom;

ap.a_miss = &miss_geom;

ap.a_rt_i = rtip;

rt_shootray(&ap);

}

hit_geom(app, pp)

struct application *app;

struct partition *pp;

{

printf(``Hit %s'', pp->pt_forw->pt_regionp->reg_name);

}

miss_geom(){

printf(``Missed'');

}

Ray Intersection Data

If a given ray hits something, the a hit() routine is called, and is provided

a pointer to the head of a doubly-linked list of partition structures. Each

partition structure contains information about a line segment along the

ray; the partition has both an \in" (pt inhit) and an \out" (pt outhit)

hit point. Each hit point is characterized by the hit distance hit dist,

which is the distance t from the starting point r pt along the ray to the

hit point. The linked list of partition structures is sorted by ascending

values of hit dist. As a result of this de�nition, the \line-of-sight" distance

between any two hit points can be determined simply by subtracting the

two hit dist values. This will give the distance between the hit points, in

millimeters.

If the variable a onehitwas set non-zero, then only the �rst a onehit hit

points along the partition list are guaranteed to be correct; any additional

hit points provided should be ignored. This is usually important only

when a onehit was set to an odd number; the value of pt outhit in the

last partition structure may not be accurate, and should be ignored.

12 Michael John Muuss and Lee A. Butler

If the actual three-space coordinates of the hit point are required, they

can be computed into the hit point element with the C-language version

of

~

A =

~

P + t �

~

D:

VJOIN1(hp->hit_point, rayp->r_pt, hp->hit_dist, rayp->r_dir);

Surface Normals

As an e�ciency measure, only the hit distances are computed when a

ray is intersected with the model geometry. The surface normal at any

hit point can be easily acquired by executing a C macro. In addition

to providing the unit-length outward-pointing surface normal in struct hit

element hit normal, this macro also computes the three-space coordinates

of the hit point in struct hit element hit point:

RT_HIT_NORM(hitp, stp, rayp);

Gaussian Curvature

For any hit point, after the surface normal has been computed, the Gaus-

sian surface curvature at that hit point can be acquired by executing the

C macro:

RT_CURVE(curvp, hitp, stp);

A curvature structure has three elements, the unit vector crv pdir

pointing in the direction of principle curvature, the scalor crv c1 (or c

1

)

giving the curvature in the principle direction, and the scalor crv c2 (or

c

2

) giving the curvature in the other direction. c

1

and c

2

are the inverse

radii of curvature, and jc

1

j � jc

2

j, i.e. c

1

is the most nearly
at principle

curvature. A positive curvature indicates that the surface bends toward

the (outward pointing) normal vector at that point. The other principle

direction is implied and can be found by taking the cross product of the

normal with crv pdir, i.e., ~pdir2 =

~

N � ~pdir1.

U-V Mapping

Both the U and V coordinates range from 0.0 to 1.0 inclusive. A given

(U,V) coordinate may appear at more than one place on the surface of

the object. The (U,V) coordinate of the hit point is returned in uvcoord

structure elements uv u and uv v. For any hit point, after the value of

hit point has been computed, the U-V coordinates of that point can be

acquired by executing the C macro:

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 13

RT_HIT_UVCOORD(ap, stp, hitp, uvp);

For some simple lighting-model applications, it is sometimes desirable to

create a mapping between the coordinate system on the surface of an object

to the coordinate system of a square, the U-V coordinates. This is generally

used to drive simple, two dimensional texture mapping algorithms. The

most common application is to extract a \paint" color from a rectangular

RGB image �le at coordinates (U,V), and apply this color to the surface

of an object. These parameters can also be used to simulate the e�ect of

minor surface roughness using the bump mapping technique. Here, the U

and V coordinates index into a rectangular �le of perturbation angles; the

surface normal returned by RT HIT NORM() is then modi�ed by up to

�90 degrees each in both the U and V directions, according to the stored

perturbation.

In addition, the approximate \beam coverage" of the ray, in U-V space,

is returned in the structure elements uv du and uv dv. These approxi-

mate values are based upon the ray's initial beam radius (a rbeam) and

beam divergence per millimeter (a diverge) as speci�ed in the application

structure. These delta-U and delta-V values can be helpful for anti-aliasing

or �ltering areas of the original texture map to produce an \area sample"

value for the hit point.

Three Dimensional Surface Mesh

Combinatorial Solid Geometric (CSG) models are formed by the boolean

combination of \primitive" solids [MUUS87a]. For example, a plate with a

hole is most easily modeled as a plate primitive minus a cylinder primitive.

It is important to note that in CSG models, there is no explicit repre-

sentation of the surfaces of the solids stored; indeed, for complex boolean

combinations of complex primitives, some of the resultant shapes may have

very convoluted topology and surfaces that may be at best high degree

polynomials.

There are many applications that would bene�t from being able to ex-

press an approximation of the complex shapes created using CSG modeling

as a collection of planar N-gons which together enclose roughly the same

volume of space as the original CSG solid. The most obvious such ap-

plication is to drive polygon-based rendering routines (lighting modules)

for predictive optical signatures. On many modern workstations there is

direct hardware or �rmware support for high-speed rendering of polygons

[MOLN87]. In addition, there are whole collections of polygon-based pre-

dictive infra-red and radar signature programs. The very best predictive

radar signatures can be calculated using the Method of Moments, which

requires having a three dimensional surface tessellation to sub-wavelength

resolution of the entire model. A technique for computing this approximate

14 Michael John Muuss and Lee A. Butler

three dimensional surface tessellation is the focus of the majority of this

paper.

Topological Representation

Some predictive radar signature codes, such as the TRACK code of GTRI

[PELF86], do not operate directly on a geometric representation of an ob-

ject. Instead, they rely on the fact that large radar returns occur primarily

due to the existence of dihedral and trihedral structures in the object.

Rather than describing a vehicle simply as a collection of these topological

structures, it is possible to analyze a three dimensional solid model to lo-

cate all instances of the topological features of interest. For example, the

software could locate planar face elements; edges where two locally planar

elements join to make a dihedral, edges where three locally planar elements

join to make a trihedral, etc. Then this list of topological features is used

as input to the feature-based analysis code.

System-Level Issues

It should be abundantly clear that it is highly desirable to have a sin-

gle, central geometric database which can be interrogated by a full suite of

analysis codes. Many fundamentally di�erent kinds of model interrogation

need to be supported in order to meet this goal. If a CAD system was

being designed afresh, without any ties to the past, then any underlying

representation could be chosen and used. In this section, the design con-

siderations for expanding the kinds of model interrogation available to the

BRL-CAD Package will be explored.

While the BRL-CAD Package comprises a large amount of �nished com-

puter software, the main investment is in the existing library of geometric

models. The amount of e�ort required to replicate these models can be

conservatively estimated in the hundreds of man-years. In addition, the

experience of the large number of trained model designers and design ana-

lysts is quite signi�cant. Clearly, any design intended to expand the kinds

of model interrogation available within the system must protect these in-

vestments.

The BRL-CAD Package as it stood in 1989 could be considered to be one

of the very few production CAD systems which was based purely on the

combinatorial solid geometry (CSG) technique. The �nal shapes of all ob-

jects were created by boolean combinations of primitive solids. No attempt

was made to represent in explicit form either the topology or the surface

geometry of any object. The exact nature of the �nal form of an object

was discovered only on a point by point basis, by sampling the object with

ray-tracing. At the same time, the assortment of primitive solids available

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 15

to designers was de�nitely a hybrid combination of traditional CSG prim-

itives and more recent boundary-representation (B-rep) primitives. The

primitive solids described by their boundaries included a variety of faceted

solids, as well as solids de�ned by a closed collection of non-rational B-spline

surfaces. This rich collection of primitive solids could be combined by the

designer using any number of boolean operations. However, complex com-

binations of primitives could be di�cult to visualize except through careful

study of the three dimensional wireframe approximation rotating in real

time, coupled with the judicious use of ray-traced renderings.

Given that modern computer workstations [MOLN87] are now commonly

available with integral polygon rendering hardware, and that hardware ren-

dering speeds can exceed one million polygons per second, it seems highly

desirable to be able to take advantage of this hardware. Also, as discussed

earlier, there is a burgeoning supply of analysis software that simply can

not make do with a geometry interrogation interface that supports only

the ray-tracing paradigm. What was missing from the BRL-CAD Package

was a way of obtaining an explicit description of the �nal shape of modeled

objects. Our quest then is for a technique suitable for obtaining an explicit

description of geometric objects.

Boolean Operations

There are several classes of modeling operations that are very conveniently

expressed in terms of boolean operations. For example, holes can be bored

in objects by subtracting a \drill bit" solid from the original work piece, and

the primary shape of an injection mold can be created by subtracting the

desired �nal product from one or more blocks of mold material. Designers

who have experienced the conceptual power of using boolean operations to

construct complex shapes are unlikely to want to switch to a system that

does not permit the use of boolean operations. Given that the existing

investment in geometric models depends heavily on the use of boolean

operations, it was concluded that adding the capability for obtaining an

explicit description of modeled objects must provide full support for the

use of boolean operations.

This conclusion immediately places several rather severe requirements

on the design. Most importantly, it requires that the underlying represen-

tation used to hold the explicit description of the modeled objects must

be closed under boolean operations. That is, given the explicit description

of objects A and B, then any boolean combination of A and B must be

representable as an explicit description expressed in terms of the same un-

derlying representation. Several available choices of representation will be

considered.

16 Michael John Muuss and Lee A. Butler

The Underlying Representation

A strictly polygonal representation could be selected. While performing

boolean operations on solids described as collections of polygons is not easy,

the representation can (with certain special de�nitions) be considered to be

closed under boolean operations, and algorithms to accomplish the boolean

evaluation have been published for several years [LAID86].

A representation comprised exclusively of rectangular parametric sur-

faces, such as B-splines or similar tensor-product surface patches could be

used. However, research to date has shown that while B-spline surfaces

can be combined using boolean operations, the resulting object can not

be expressed strictly in terms of B-splines [THOM84]. Instead, a mixed

representation of B-splines and polygons is produced, and this mixture

becomes ungainly when subjected to repeated boolean operations. This

occurs because the boolean combination of rectangular parametric surfaces

is not necessarily bounded by rectangular parametric surfaces; i.e., the rep-

resentation is not closed. Recent work has suggested that a representation

comprised of trimmed B-splines and shared-edge polylines might be closed

under boolean operations [COBB84], but a full implementation is not yet

known to exist.

No other good choices for an underlying representation could be found.

Because the B-spline representation does not have closure under the set

of boolean operations, it regrettably could not be used. Therefore, there

was no choice; the explicit representation of modeled objects would have

to be expressed in terms of collections of polygons. This certainly met the

requirements of the polygon based application codes, but it posed a whole

host of new questions.

Topology

Given that the explicit geometric representation of surfaces will be ap-

proximated using polygons, there still remains the question of how to deal

with the representation of the topology. The simplest strategy would be to

simply ignore topology, and store solid objects as collections of polygons.

This has several drawbacks because these objects are intended to represent

enclosed volumes of space. It could be quite di�cult to verify that a given

collection of polygons is in fact a valid solid, without any cracks, dangling

faces, or missing faces. Also, implementing boolean operations without any

explicit topology would be nearly impossible.

Traditionally, solid modeling systems based on boundary representations

such as PADL [REQU82] have employed the winged edge data structure for

storing topology, as discussed earlier. The disadvantage of the winged edge

data structure is that it is simply unable to represent many of the non-

manifold conditions that arise in the construction of complex shapes (such

as �nite element meshes), and the non-manifold conditions that arise from

the use of the intersection operator (\) on two objects that share only a

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 17

single face, edge, or vertex. Those systems employing the winged edge data

structure that also support boolean operations (such as PADL) have had

to resort to the use of regularized boolean operators which are de�ned in

such a way as not to produce any non-manifold results. These regularized

boolean operators are denoted by a superscript asterisk, i.e., regularized

union is [

�

, regularized intersection is \

�

, and regularized subtraction is

�

�

.

It seems unfortunate to have to restrict boolean operations on the polyg-

onal representation to not include any non-manifold results. Some appli-

cations might desire them, and others might not; unwanted non-manifold

results are easy to discard, but there is no easy way to re-infer the existance

of non-manifold results if the representation can not express them. This is

akin to the \language limits thought" concept from cognitive psychology.

Non-manifold results can be useful in a variety of ways. One example is

in interference or overlap checking. The intersection of two objects can be

computed. If the intersection is the null set, then the two objects are dis-

joint, and there is space between them. If the intersection is a solid object,

then the two objects overlap in the given volume, which generally signals a

modeling error. If the intersection is a lone face, edge, or vertex, then the

two objects exactly touch, but do not overlap.

The inability of the \winged-edge" data structure to represent non-

3-manifold conditions prompted Weiler to evaluate existing edge-based

data structures [WEIL85]. This resulted in the development of a new

data structure suitable for representing all the Non-3-Manifold Geometric

(NMG) and topological con�gurations that boolean operations might pro-

duce [WEIL87]. This new data structure has been dubbed alternately the

\radial-edge", or \NMG" data structure. Because of this structure's ability

to handle 3-manifolds (solids), 2-manifolds (faces), 1-manifolds (edges), and

0-manifolds (points), NMG objects are closed under boolean operations.

The NMG data structures have the advantages of complete generality

and closure under boolean operations, plus they encode the full topological

structure of an object, as well as the geometric information. The represen-

tation contains full topology information, so that the relationships between

vertices, edges, loops, faces, and shells are continuously available. Geome-

try is associated with each topological element. For example, the geometry

information associated with a planar face is the plane equation which in-

cludes the outward-pointing surface normal; the plane equation does not

have to be re-derived from the vertices. This generality does come at a sig-

ni�cant price in increased memory use compared to the winged-edge data

structure. However, because of the anticipated frequency of occurance of

non-3-manifold conditions in CSG modeling, both intentionally and as part

of various analysis operations, the NMG data structures were selected to

contain the approximate surface representation.

18 Michael John Muuss and Lee A. Butler

Conversion versus Post-Processing

Several of the existing and planned primitive solids have very complex

curved shapes. Some examples include the torus, the truncated generalized

cone, the hyperboloid of two sheets, the general polynomial solid, and

the B-spline solid. In general, these solids have few or no sub-sections

which are
at. Thus, these solids can not be represented by a collection

of polygons without loosing essential information about the very nature of

the solids. Yet, the desire to have a homogeneous representation suggests

that all existing solids should be converted to a single new underlying

representation, so as to take advantage of the boolean closure property,

and to enable applications to access the explicit surface representation.

The two options to consider are either (a) making a one-time conversion

of all existing models to a polygonal form, and then performing all sub-

sequent editing and processing on a polygonal database; or (b) retaining

the existing, implicit combinatorial solid geometry database, and providing

some form of post-processing capability to convert the implicit CSG shapes

into an explicit, polygonal form.

Many existing application codes that use the ray-tracing paradigm de-

pend on being able to obtain very accurate surface normal and Gaussian

curvature information at any point on an object. While surface normal in-

terpolation [GOUR71] can be used with a polygonal representation, many

artifacts can be introduced, including surface normal discontinuities across

polygon boundaries and inconsistencies between the apparent and actual

location and shape of pro�le edges. While these artifacts may be entirely

tolerable in simple rendering applications, they are entirely inappropriate

in a CAD system targeted for high-resolution engineering analysis. Finally,

it would be extremely distasteful to have to reduce the quality of the ray-

tracing style of interrogation in order to accomodate the ability to obtain

explicit object surfaces.

Therefore, the conclusion was that the existing combinatorial solid ge-

ometry database would remain unchanged, and that any application that

required an explicit representation of the modeled shapes would obtain that

explicit representation through some form of conversion of the underlying

CSG database. While this capability needs to be available to any appli-

cation at any time, it can still be thought of as being a \post-processing"

operation.

This choice of strategy has a number of fortunate implications. Because

a polygonal representation of a fundamentally curved shape could never

be more than an approximation of that shape, it is impossible to choose a

single resolution approximation that would satisfy all applications. Using

a coarse approximation would quickly produce complaints about a lack of

accuracy in the modeling system. For example, few engineering applica-

tions could tolerate octagonal pipes being substituted for genuine round

pipe. On the other hand, using a very �ne approximation would consume

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 19

gargantuan amounts of memory, which would impede simple operations

such as model editing and display.

With this strategy, the polygonal representation can be considered just

an approximation of a much more accurate underlying geometric model.

Furthermore, because this approximation can be created dynamically, each

application has the opportunity to control the resolution of the approxi-

mation being created. This permits each application to obtain exactly the

degree of resolution required, without having to worry about the approxi-

mation being too coarse or too bulky.

Implementation Tactics

The strategy that has been adopted has several key points. Whenever an

application requires an explicit description of the surface of an object, it

will access the Application Interface to obtain an approximation created

to meet accuracy requirements of this particular application. The explicit

representation of the object will be returned as a collection of planar faces

embedded in the NMG data structures.

The existing Application Interface to the geometry database already has

a nice simple programming interface. Thus, it seems appropriate to have a

high-level interface similar to rt gettree(). The application would indicate

what objects or object heirarchies are to be retrieved from the database,

and what the accuracy requirements are, and would be given in return a

collection of NMG data structures that would contain the surface approx-

imation of the indicated objects.

The actual implementation of the application interface can be further

broken into several pieces. The existing routine db walk tree() is used

to retrieve the indicated objects from the database. Each solid retrieved

from the database needs to be converted to an approximate faceted form

stored in NMG data structures. This operation is referred to as tessellation.

As each boolean operation is encountered in the database, the appropriate

tessellated solids will have that boolean operation performed by the routine

nmg do bool(). This routine will take the two tessellated objects and

combine them according to the boolean operation back into a consistent set

of solid tessellated objects. Until very recently, it has been this step that has

proven the most di�cult [LAID86]. Once all the objects have been retrieved

from the database and combined with their boolean formulas, the resultant

collection of NMG objects is returned to the application. (More precisely,

the application is returned a struct model which contains pointers to

the requested objects, stored as one or more struct nmgregions). This

architecture gives rise to the schematic diagram in Figure 3.

In the existing ray-tracing implementation, librt makes heavy use of an

object-oriented style of procedural interfaces to geometry support routines.

This object-oriented programming interface already de�ned a standardized

set of operations that could be performed on geometric objects. The oper-

ations include having a geometric object read itself into memory, describe

20 Michael John Muuss and Lee A. Butler

Hardware Rendering

NMG Analysis

Polygon Analysis Triangulate

Evaluate Boolean Expressions

Tessellate to NMG

Database

Geometry

Figure 3 { Schematic NMG Wiring Diagram

itself, produce a wireframe representation of itself, and intersect a ray with

itself. This interface was extended to de�ne a new operation to require

an object to tessellate itself into an NMG data structure. This has the

highly desirable property that all the processing related to a given prim-

itive solid remains centralized in a single solid-speci�c geometry module.

Thus, adding a new primitive solid requires only the addition of a single

module to the library; none of the analysis codes ever need to be modi�ed

when designers begin using a new kind of primitive.

Interface to Applications

From the schematic diagram it should be clear that the �nal evaluated

NMG solid object can be employed in a variety of ways. The primary

use will be for input to visualization and analysis software that needs an

approximate three dimensional surface mesh of the solid model. However,

a very powerful additional use will be to create new faceted shapes which

are then stored back in the database as new geometric objects, suitable for

future editing or analysis.

As will be explained in more detail in subsequent chapters, each face

of an NMG object will be composed of one or more planar N-gons, each

potentially non-convex and with embedded internal loops. Applications

that are prepared to deal with this topological richness may operate on the

NMG representation directly. However, for those applications that require

a simpler face topology, a simpli�cation routine exists that will reduce each

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 21

face to a collection of planar N-gons. These simpli�ed N-gons may be non-

convex but will have no embedded internal loops. Finally, for applications

that prefer faces to be collections of simple triangles, a triangulator routine

will be provided that convertes the NMG faces into well-behaved triangles

[GOOD89].

Non-Manifold Geometry

One of the keys to the NMG approach lies with the concept of the radial-

edge representation as opposed to the classical winged-edge. Within the

winged-edge representation, an edge represents the boundary between ex-

actly two faces. The drawback to this is that an in�nite number of planes

or faces can intersect in a single line in three dimensional space. The

winged edge representation only allows for a pairwise topological connec-

tion between these faces. The radial-edge representation topologically links

all faces which share the edge as a line of intersection. The implementa-

tion described in this paper is heavily patterned after a description of the

radial-edge data structures and operations written by Weiler [WEIL87].

Separation of Topology and Geometry

The basic topological elements are the vertex, edge, loop, face, shell, region,

and model. The relationship between these elements of the hierarchy is

depicted in Figure 4. Note that for any element within the hierarchy, there

is a direct path from that element to the element which is one level higher,

and also to the element which is one level lower.

Region

Vertexuse

Edgeuse

Loopuse

Faceuse

Shell

Model

Face

Loop

Edge

Vertex

Figure 4 { NMG Structure Hierarchy

22 Michael John Muuss and Lee A. Butler

The vertex represents a unique topological point. The edge is a line or

curve in space terminated by either one vertex, or two distinct vertices.

The loop is either a single vertex, or a circuit of one or more edges. A loop

de�nes a circuit or a boundary of a space. The face consists of one or more

loops, and represents an actual surface area. The use of a loop within a

face may de�ne either an exterior loop or an interior loop. Exterior loops

include an area in the face. Interior loops exclude an area from the face

surface, thereby causing a hole in the face.

The shell is either a single vertex, or a collection of faces, loops, and

edges. The collection of faces in a shell may enclose a volume, thereby

creating closed objects, or may represent arbitrary surfaces. Loops and

edges of a shell are refered to as \wire loops" and \wire edges." They may

be used in creating wireframe aspects of the model.

The region is a collection of shells, and the model is a collection of regions.

For the elements vertex, edge, loop, and face, there is a distinction be-

tween the existence of the element and instances of the use of the element.

This allows multiple topological elements to share the same underlying

form and geometry. The vertexuse is an instance or a use of a vertex. The

edgeuse is a directed instance of an edge. The loopuse is an instance of a

loop. The faceuse is an instance or a use of a face. Each side of the face is

uniquely represented by a faceuse, i.e., every face is referenced by exactly

two faceuses.

Finally, note that each topological element makes reference to a separate

geometric element. As a result of this separation of topology and geome-

try, the kinds of geometric support in the modeling system may evolve into

richer and richer forms, while continuing to enjoy a common set of topo-

logical elements with a stable interface. For example, the system described

in this paper is based upon manipulation of planar facets. However, in

the future the geometry support of the system will be expanded to sup-

port curved facets or B-splines, while retaining the same interface to the

topology.

The Data Structures in Detail

Magic Numbers and Memory Descriptors

The �rst long (longword of memory) in any of the NMG structures is

dedicated to a magic number. It will be found either listed explicitly as

the �rst entry in the structure de�nition, or it will be hidden, obtained

implicitly from the struct nmg list sub-structure (described below) which

is the �rst entry in the structure de�nition. Thus, it is always located at

an o�set of zero bytes from the start of the structure. This magic number

serves a dual purpose. First, every subroutine that is passed a pointer as a

parameter can dereference that pointer to obtain the magic number. If the

magic number obtained does not match the magic number assigned for use

with that kind of data structure, then either memory has become corrupted,

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 23

or a defective pointer has been provided as a parameter. Given that some

NMG operations may have to dereference pointers through seven connected

data structures, it is advantageous to detect invalid pointers as early in the

process as possible. Second, some data structures employ generic pointers

which may refer to one of several di�erent kinds of structures. Rather than

using an extra word of memory to store a type indicator, the generic pointer

can be dereferenced to obtain the magic number, and thus the identity, of

the referred-to structure.

Structure Indices

A count of the number of structures within a model is kept. Each structure

type contains an integer \index" member which uniquely identi�es the

instance of a structure type within the model. This assists algorithmswhich

must temporarily associate some
ag or bit of information with structures.

In these instances, an array can be allocated with the appropriate size so

that there exists one array element for each structure in the model. As

the model hierarchy is walked, the index elements can be used to quickly

access the temporary information appropriate for this particular structure.

Applications for this include copying the model between memory and disk,

and
ags to help assure that every structure is visited or operated upon

exactly once.

Linked lists

The NMG data structures make frequent use of doubly linked lists. With

one exception, they are all implemented using the same strategy and list

manipulationmacros. (It is the radial-edge linked list which does not follow

this form.) All linked lists are made up of \nmg list" structures:

struct nmg_list {

long magic; /* magic number */

struct nmg_list *forw; /* ``forward'', ``next'' */

struct nmg_list *back; /* ``back'', ``last'' */

};

The magic number �eld of this structure identi�es the node as either a

list head or as a structural element. The two pointers are to the successor

and predecessor of the node in the list. Every list has one structure which

is dedicated to functioning as the \head" node. An empty list consists of a

\head" node whose \forw" and \back" members are pointers to the \head"

node. De�ning the doubly linked list as having an explicit \head" means

that the enqueue and dequeue operations can operate on any member of

the list, and they do not need to refer to the head.

Consider the task of making a linked list of edgeuse structures. The �rst

element of the edgeuse structure is an nmg list structure named l. Thus,

24 Michael John Muuss and Lee A. Butler

the address of l is a pun (or homonym) for the address of the edgeuse

structure. By adding l to a linked list, in reality the whole edgeuse struc-

ture has been added to the linked list. This allows the list manipulation

functions to be generalized to handle lists of any kind of structures. The

manipulation routines merely operate on nmg list objects and need not

know details about what structure types are in the list. The only require-

ment is that the nmg list structure must appear as the �rst element in

the containing structure. A rich set of macros exist for insulating the pro-

grammer from all the details of inserting and deleting elements from a list,

walking a linked list, and various initialization and clean-up operations.

Naming Conventions

When creating variable names and structure member names, the imple-

mentation makes heavy use of abbreviations. As a result, it was important

to regularize the abbreviation strategy. The su�x \ p" is appended to the

end of all pointer variables in the structures. The �rst characters of the

variable indicate the type of object the pointer references. For example,

a pointer to a vertex structure would be \v p", and \vu p" would be a

pointer to a vertexuse structure.

Some structures types may have a variety of di�erent structure types as

\parent" or \child" structures. Since each structure maintains a pointer to

its parent and children, a method for maintaining a syntactically correct

handle for such objects is required. Such pointers are stored as unions of

pointers to each possible type of structure required, plus a pointer to a

magic number. For example, Figure 4 demonstrates that a vertexuse may

have either a shell, a loopuse or an edgeuse for a parent. As a result, the

vertexuse structure will contain something similar to the following:

union {

struct shell *s_p;

struct loopuse *lu_p;

struct edgeuse *eu_p;

long *magic_p;

} parent;

This union provides a handle for each possible type of parent for the

vertexuse structure. In addition, it contains a \pointer to magic number"

handle. This allows the type and validity of the parent to be identi�ed

as a particular structure type, before the parent structure is referenced.

This union owes its existence to the Pascal origins of the implementation

by Weiler. In the C language, a simple \pointer to long integer" and the

language's ability to coerce one type of pointer into another type of pointer

using type-casting would have been su�cient. It is debatable whether type-

casting or the union-name-handle approach produces more readable source

code.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 25

The names for linked list \head nodes" use the \ hd" su�x, and the �rst

letters indicate the type of object in the list. For example, the head of a

list of vertexuse structures would be called \vu hd". When a structure is

to be a part of a linked list, the �rst element of the structure will be an

element \l", the list node which becomes a member of a linked list. As

described in the section on linked list implementation, by keeping this item

as the �rst element in the list, the list manipulation interface can be made

fully general for lists of all types of elements.

Vertex and Vertexuse

The simplest element in the system is the Vertex. A vertex represents a

single point within the topological space of the object being modeled. It

also serves as a linkage point for connecting the topological model with

the geometrical data. The structures \vertex" and \vertexuse" can be

conceptually viewed as in Figure 5. The magic number is stored directly

as the �rst element of the structure. The second item is an \nmg list"

substructure. This substructure forms the head of a doubly-linked list

of all the uses of this vertex. The member \vg p" is a pointer to the

geometry. The index element keeps the structure index for the particular

vertex instance. The vertex structure is referenced through a vertexuse

structure.

The \l" element of the vertexuse structure is entered on the vertex struc-

ture's \vu hd" list, which is a list of all uses of the vertex. This linked list

node also contains the magic number for the vertexuse structure. A ver-

texuse may be needed by any of the higher level objects: shell, loopuse, or

l.forw

l.back

l.forwl.back

v_pv_p

v_p

Vertexuse Vertexuse

Vertexuse

vu_hd

v_p

l.forw

l.back

Vertexuse

Vertex

Figure 5 { Vertex and Vertex Uses

26 Michael John Muuss and Lee A. Butler

struct vertex {

long magic;

struct nmg_list vu_hd;

struct vertex_g *vg_p;

long index;

};

struct vertexuse {

struct nmg_list l;

union {

struct shell *s_p;

struct loopuse *lu_p;

struct edgeuse *eu_p;

long *magic_p;

} up;

struct vertex *v_p;

struct vertexuse_a *vua_p;

long index;

};

typedef double point_t[3];

struct vertex_g {

long magic;

point_t coord;

long index;

};

edgeuse. The union \up" contains a pointer to each of these three struc-

ture types. It also contains a pointer to a magic number, which can be

used as a handle for getting the magic number of the parent. The element

v p is a pointer to the vertex being used by this vertexuse. The vertexuse

may have an associated vertexuse attribute structure. This structure is

referenced through the \vua p" pointer. One example of such information

might be to store a surface normal for each vertexuse, suitable for intensity

interpolation shading algorithms used in Gouraud shading [GOUR71], or

for normal-vector interpolation shading algorithms.

The vertex geometry structure is very simple and straightforward. It

consists of a magic number, the coordinates of the vertex, and a structure

index. The coordinates are stored in a variable of type point t, which is an

array of three double-precision
oating point numbers.

Edge and Edgeuse

The next topological element is the edge. The edge represents a line or

curve between a pair of vertices. The unique members of this structure

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 27

vu_p
e_p

e_p

Vertex

Vertexuse

eumate_p

eumate_p

Vertexuse

Vertex

Edgeuse (mate)

Edge

Edgeuse

up.eu_p

v_p

v_p

up.eu_pvu_p

Figure 6 { Edge and Edgeuse

are \eu p" which is a pointer to one of the uses of the edge, and \eg p"

which is a pointer to the edge geometry. The edge geometry structure is

reserved for future curved-edge support. Note that the edge structure itself

does not reference the endpoints of the edge. The endpoints are accessed

through the edgeuse structure because almost all references to the edge

endpoints occur while processing the edgeuse structures [WEIL87]. Within

the edgeuse structure, the edge struct pointer \e p" ties the edgeuse to the

appropriate edge.

struct edge {

long magic;

struct edgeuse *eu_p;

struct edge_g *eg_p;

long index;

};

struct edgeuse {

struct nmg_list l;

union {

struct loopuse *lu_p;

struct shell *s_p;

long *magic_p;

} up;

struct edgeuse *eumate_p;

struct edgeuse *radial_p;

struct edge *e_p;

struct vertexuse *vu_p;

long index;

};

28 Michael John Muuss and Lee A. Butler

Vertex

Edge

Vertexuse

edgeuse4

edgeuse3

edgeuse2

edgeuse1

Radial

Mate

Mate

Radial

Figure 7 { Radial Edge Structure

Each edgeuse references one vertex via the vertexuse structure pointer

\vu p". The other end of the edge/edgeuse is referenced through the �rst

edgeuse's mate edgeuse. The pointer \eumate p" connects an edgeuse to

it's edgeuse mate. The eumate p edgeuse is conceptually the use of the edge

on the opposite side (interior/exterior wise) of the face from the existing

edgeuse. The \eumate p" and \radial p" pointers form a linked list of the

\radial uses" of an edge. The edgeuse referenced by \eumate p" is on the

opposite loopuse/faceuse of the same loop/face. The edgeuse \l" list node is

used to form loops of edges, or to keep lists of all of the \wire edges" which

are a part of a shell. Like the vertexuse, the edgeuse can be referenced by

one of two di�erent types of structures higher in the hierarchy. The same

technique is used for providing handles for these \parent" structures as was

used for the vertexuse.

Loop and Loopuse

A loop de�nes a boundary or circuit. Conceptually, a loop consists of

either a single vertex, or a series of one or more edges in a circuit. Like

the edge, most of this information is stored in the use structure. The loop

structure member \lu g" is a pointer to the geometry support for the loop.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 29

C

BA

loopuse

edgeuse

vertexuse

up.lu_p
up.lu_p

vertexuse

loopuse

edgeusevertexuse

up.lu_p

loopuse

up.lu_p

Figure 8 { Variations of the Loop

The member \lu p" connects the loop structure to one of the loopuses of the

loop. From that loopuse, the other use of the loop is reached through the

\lumate p" structure pointer. The geometry structure continas a bounding

box for the loop.

The loopuse structure is where most of the loop details are handled.

The �rst element is a linked list node, so that faces and shells may keep

track of collections of loopuses. The union \up" provides a handle for

all possible parents of the loopuse. The \lumate p" member provides a

pointer to the other use of the same loop as this loopuse. Often the other

loopuse will be the use of this loop on the opposite surface of a face. The

\orientation" member is used to de�ne whether this loopuse is being used

to enclose space, or exclude space within a face. The loopuse is associated

with a particular loop through the pointer \lu p." The structure member

\down hd" is a list head which is used to access the component elements

which form the loop. In the case where the loop is made up of one or more

edges, this list will consist of a series of edgeuses. When the loop is formed

on a single vertex, the �rst and only item in the list will be the vertexuse

associated with the loopuse.

Figure 8A depicts a use of a loop (a loopuse) where the boundary formed

by the loop consists of a single vertex. Figure 8B depicts a loop which is

formed of one edge, and Figure 8C depicts a loop which is formed of four

30 Michael John Muuss and Lee A. Butler

struct loop {

long magic;

struct loopuse *lu_p; /* Ptr to one use of this loop */

struct loop_g *lg_p; /* Geometry */

long index;

};

struct loopuse {

struct nmg_list l;

union {

struct faceuse *fu_p;

struct shell *s_p;

long *magic_p;

} up;

struct loopuse *lumate_p;

char orientation;

struct loop *l_p;

struct nmg_list down_hd;

long index;

};

edges. When the loopuse is made up of edgeuses, they will be arranged to

form a circuit. The mates to these edges will form a circuit for the loopuse

mate. If the loopuses are a part of a faceuse, the edgeuses are arranged in

a special orientation. When the cross product of the vector of the edgeuse

and the normal vector for the faceuse is taken, the resultant vector should

point into and along the surface of the face. See Figure 9.

Face and Faceuse

The face represents a planar or curvilinear two-dimensional boundary or

surface. The pointer \fu p" is a pointer to one of the two faceuses of the

face, the other being reached through that faceuse's \fumate p" pointer.

The pointer \fg p" references the geometry structure for the face. The

face geometry structure keeps a bounding box, and the plane equation of

the face. The equation is stored as a 4-tuple of double precision
oating

point numbers. A point

~

A which lies on the plane will satisfy the following

relation:

N

x

�A

x

+N

y

�A

y

+N

z

�A

z

�N

3

= 0

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 31

V

N

Eu

A

Eu

N

V

B

Figure 9 { Orientation of Edgeuses within a Loopuse

struct face {

long magic;

struct faceuse *fu_p;

struct face_g *fg_p;

long index;

};

typedef double plane_t[4];

struct face_g {

long magic;

plane_t N;

point_t min_pt;

point_t max_pt;

long index;

};

Faceuses represent a side of the surface of a face. Each face will therefore

have exactly two faceuses associated with it. The �rst element in the

faceuse structure is a linked list node. This is here so that the shell may

keep a list of all the faceuses which are in the shell. The pointer \s p"

is a pointer to the parent shell of the faceuse. The other use of the same

32 Michael John Muuss and Lee A. Butler

face is indicated by the faceuse pointer \fumate p". The \orientation"

member indicates which side of the face is represented by the faceuse. It

actually indicates whether the surface normal of the faceuse is the same as

the normal stored in the face geometry structure, or whether the normal

is reversed. The faceuse is associated with a particular face through the

\f p" pointer. \lu hd" keeps track of all loops in the face.

struct faceuse {

struct nmg_list l;

struct shell *s_p;

struct faceuse *fumate_p;

char orientation;

struct face *f_p;

struct nmg_list lu_hd;

long index;

};

Shell

The shell represents a set of collected, inter-related (and probably con-

nected) items. The �rst element is a linked list node to allow groups of

shells to be collected into a list. The member \r p" is a pointer to the

parent nmgregion for the shell. The attribute or geometry structure for

the shell as a whole are refered to through the pointer \sa p". The lists

\fu hd", \lu hd", \eu hd" are used to keep track of the faceuses, wire loo-

puses, and wire edgeuses which make up the shell. The pointer \vu p"

points to a single vertexuse when the shell consits of a single vertex. The

shell attribute structure \sa p" is used to store a bounding box for the

entire shell.

struct shell {

struct nmg_list l;

struct nmgregion *r_p;

struct shell_a *sa_p;

struct nmg_list fu_hd;

struct nmg_list lu_hd;

struct nmg_list eu_hd;

struct vertexuse *vu_p;

long index;

};

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 33

Region

Regions are used to keep collections of associated shells within the model

space. The nmgregion is included in the model's list of regions through the

linked list node at the head of the region structure Because the structure

name \region" was already in extensive use through out the BRL-CAD

Package when the development of the NMG capability was begun, the

structure has been called \nmgregion" instead of simply \region". At some

point in the future, the implementation will probably be altered so that all

NMG structures begin with the pre�x \nmg". The \nmgregion" structure

consists of a linked list node \l", a pointer to the parent model \m p" and

a list of shells which make up the region \s hd". The region attributes

structure is used to store a bounding box for the entire region.

struct nmgregion {

struct nmg_list l;

struct model *m_p;

struct nmgregion_a *ra_p;

struct nmg_list s_hd;

long index;

};

Model

The model represents the top of the hierarchy for the NMG structures.

The list \r hd" keeps track of all regions or \nmgregions" in the model

space. The long integer \maxindex" contains the number of structures

which have been allocated in the model. It exists so that arrays can be

allocated with one element for each structure in the model.

struct model {

long magic;

struct nmg_list r_hd;

long index;

long maxindex;

};

Variations

There are several di�erences between this implementation of the radial

edge data structures and Weilers implementation [WEIL87]. Some of the

di�erences are a result of the di�erent programming languages used, while

others are a result of the di�erent goals of the implementations. While

Weiler was implementing an entire modeling system based exclusively upon

34 Michael John Muuss and Lee A. Butler

the NMG structures, within the BRL-CAD Package NMG objects are just

one representation of many. The di�erences are outlined as follows:

o Wire loops are permitted as members of the shell to simplify the creation

and manipulation of loops and faces within the system. This also permits

a shell to be comprised of a \point cloud" made up of loops on individual

vertex points.

o Each of the structures faceuse, loopuse, and edgeuse as described by

Weiler had attribute substructures which were used for storing infor-

mation unique to a particular use of the object. This has not proven

necessary in this implementation.

o The shell keeps a list of all wire edges within the shell. Under the system

described by Weiler, some wire edges were \discovered" by looking at

vertices (vertexes) used in the shell, to �nd other uses of the same ver-

tex(es) which were children of edgeuses whose parent is the same shell.

o The linked lists in the Pascal language structures described by Weiler

were maintained by directly manipulating \next" and \last" pointers

within the structures. In this implementation, all structures which are

kept in lists contain a generic \list node"; manipluation of the linked lists

is via a standardized set of macros.

o In this implementation, generic pointers which may reference more than

one type of structure are disambiguated by dereferencing the pointer

and inspecting resulting \magic number". Because Pascal is a \strongly

typed" programming language, Weiler's implementation required that a

structure pointer be disambiguated before it was dereferenced. Hence an

additional variable in the structure containing the pointer was used to

indicate the appropriate interpretation for the generic pointer.

o All uses of a face must belong to one shell.

NMG Library Interface

The applications programmer is insulated from the details of the NMG

radial-edge data structures by a library of functions which perform all of

the basic tasks. Each of the routines accepts a valid NMG model or a

part of one, and performs an operation, returning a valid model upon com-

pletion. The routines within the library can be classi�ed as constructive,

destructive, or manipulative. This chapter provides a basic description of

the routines in these categories. Within the library, all routines which are

intended for use by the applications programmer or user begin with the

\nmg " pre�x.

Construction Routines

The basic constructive routines all have the letter \m" (which stands for

\make") immediately after the \nmg " pre�x.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 35

o struct model *nmg mm() \Make Model" creates a new NMG model

structure and �lls in the appropriate �elds. The result is an empty

model.

o struct model *nmg mmr() \Make Model, Region" creates a new model

with a call to \nmg mm" and creates a region within the model. The

region is empty.

o struct shell *nmg msv(struct nmgregion *r p) \Make Shell, Vertex" cre-

ates a new shell consisting of a single vertex in the parameter region. A

new vertex is created for the shell.

o struct nmgregion *nmg mrsv(struct model *m) \Make Region, Shell,

Vertex" creates a new region within the existing model, and creates a

shell of a single vertex within the region.

o struct vertexuse *nmg mvvu(long *upptr) \Make Vertex, Vertexuse" ex-

ists so that shells, loops and edges can be created on a new vertex.

\upptr" points to the parent structure for which the vertex and vertex

use are being created. The new vertexuse will reference this structure as

its parent.

o struct vertexuse *nmg mvu(struct vertex *v, long *upptr) \Make Ver-

texuse" allocates a new vertexuse for an existing vertex. The vertexuse

becomes a child of the structure indicated by \upptr".

o struct edgeuse *nmg me(struct vertex *v1, struct vertex *v2, struct shell

*s) \Make Edge" creates a new wire edge in the shell speci�ed. The

vertex pointer parameters may either indicate vertexes for the endpoints

of the new wire edge, or may be NULL pointers. New vertex structures

will be generated for each NULL vertex parameter.

o struct edgeuse *nmg meonvu(struct vertexuse *vu) \Make Edge on ex-

isting Vertexuse" is used to create an edge on a vertex in a loop or shell.

The resultant edge has the same vertex at each endpoint.

o struct edgeuse *nmg eusplit(struct vertex *v, struct edgeuse *eu)

\Edgeuse Split" splits an existing edgeuse pair of a wire or \dangling"

face-edge by inserting a new vertex.

o struct edge *nmg esplit(struct vertex *v, struct edge *e) \Edge Split"

causes a new vertex to be inserted along an existing edge. If the pa-

rameter vertex pointer is NULL, an new vertex is created. The vertex

inserted need not lie along the existing edge. See Figure 10.

o struct edgeuse *nmg eins(struct edgeuse *eu) \Edge Insert" inserts a

new, zero length edge between the edge associated with the parame-

ter edgeuse and the edge associated with the edgeuse \previous" to the

parameter edgeuse. See Figure 10.

o struct loopuse *nmg ml(struct shell *s) \Make Loop" takes the largest

possible number of contiguous wire edges which form a circuit from the

parameter shell and uses them to create a wire loop in the shell.

o struct loopuse *nmg mlv(long *magic, struct vertex *v, int orientation)

\Make Loop, Vertex" creates a new vertex-loop. The loop will be a child

of the structure indicated by the magic number pointer parameter, and

36 Michael John Muuss and Lee A. Butler

Vertex

Vertexuse

Vertexuse

Vertex Vertex
EdgeAfter

Before

nmg_einsnmg_esplit

eu

eu

Edge

EdgeEdge

EdgeEdge VertexVertexVertex

Edge

Vertex

Vertex Vertex

Edge

Figure 10 { Edge Operators

will have the speci�ed orientation. If the vertex pointer is NULL, a new

vertex is created for the loop.

o struct faceuse *nmg mf(struct loopuse *lu1) \Make Face" generates a

new face from the parameter wire loop and its mate.

Convenience Routines

In order to simplify the creation of manifold and non-manifold faces, The

following two routines are provided for the application developer.

o struct faceuse *nmg cface(struct shell *s, struct vertex **vt, int n) \Cre-

ate Face" creates a (non-manifold) face from a list of vertex structure

pointers. The face will be a child of the shell indicated in the parameter

list. The parameter \vt" is an array of pointers to vertex structures. The

length of the array is indicated by the parameter \n". If \vt" is a null

pointer, then the face will be created as a polygon on \n" new vertex

structures. If \vt" is non-null, a null entry in the list will cause a new

vertex to be allocated for that position. The vertexes in the list should

be ordered in a clockwise manner for a viewer looking backwards along

the normal vector of the desired face.

o struct faceuse *nmg cmface(struct shell *s, struct vertex **vt[], int n)

\Create Manifold Face" generates a manifold face in the indicated shell.

The parameter \vt" is an array of \n" pointers to pointers to vertex

structures. If a pointer in vt is a pointer to a null vertex pointer, a

new vertex is created for that position. In this way, new vertices can be

created conveniently within a user's list of known vertices. The vertices

should be listed in \clockwise" order for a viewer looking backwards

along the normal of the desired face. In addition to creating the face,

the routine will join edges of the new face with dangling edges of other

faces in the same shell. This makes it easier for the applications code to

generate topologically correct, closed, manifold objects.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 37

Creating Faces

The usual technique for creating a model is to �rst allocate a model with

a call to the \Make Model" routine \nmg mm". The resultant model does

not have any regions within it. Next, a region, and shell consisting of a

single vertex are created with a call to \Make Region, Shell, Vertex" or

\nmg mrsv". This lone vertex will be consumed when the �rst edge or

loop is created in the shell.

At this point, there are many separate paths to creating the �rst face. If

a manifold object is the desired goal, then one of the routines \nmg cface"

or \nmg cmface" should probably be employed. Alternatively, a loop con-

sisting of a single vertex can be created with a call to \nmg mlv" (Make

Loop, Vertex). Then a face can be made with the loop via a call to

\nmg mf". The loop may then be expanded to an edge-loop with calls

to \nmg meonvu" and new vertex points inserted with \nmg esplit".

Creating a Closed Object

Ordinarily, the applications programmer will be interested in creating

simple closed objects. The �nal topology of the object is already well

understood at the time of creation. That is to say, the number of vertices

is known, as well as their relationships to various edges and faces. In order

to simplify the creation of such objects, the library provides the routine

nmg cmface or "Create Manifold Face." In addition to providing a simple

interface for creating complex faces, the routine also takes care of meshing

the edgeuses of the new face with the radial edge structure of pre-existing

edges. This is important for the creation of topologically closed objects.

To build a face using nmg cmface, the application programmer must

provide a pointer to the parent shell for the face, an array of pointers to

pointers to struct vertex, and the length of the array. The reason for the

complexity of the array is actually to simplify the job of the applications

programmer when making faces for which vertices do not yet exist.

vertp

Elements from verts

struct vertexstruct vertex

Pointers to

Figure 11 { Conceptual View of Arguments to nmg cmface

38 Michael John Muuss and Lee A. Butler

The application keeps an array of pointers to struct vertex (the array

verts in the example below). This array contains pointers to the vertex

structures used in the object being built. A null pointer in this list indicates

a vertex structure which does not exist prior to the creation of the face or

object. When these pointers are encountered by the nmg cmface routine,

a new vertex will automatically be allocated and a pointer to the new

vertex inserted in the list. The mechanism for this will become clear later.

Another array (vertp in the example below) is used as the argument to

nmg cmface. This second array will contain pointers to elements in the

�rst array. For example, take as given an array of pointers to struct vertex

called verts[], and an array of pointers to pointers to struct vertex called

vertp[]. Now suppose a triangular face is desired, and verts[0], verts[2],

and verts[3] are pointers to the vertices at the corners of the face. The

result can be conceptually viewed as in Figure 11. The elements of vertp

should be ordered so that when the new face is viewed from the outside or

normal-ward direction, the vertices will be listed in clockwise order. The

face can then be created in the shell indicated by the pointer shell p with

the following call to nmg cmface:

struct vertex *verts[4], **vertp[3];

vertp[0] = verts[0];

vertp[1] = verts[2];

vertp[2] = verts[3];

nmg_cmface(shell_p, vertp, 3);

Thus to create an NMG object (as is done in the tesselation process), the

application �rst builds the list of vertex structures needed. This consists of

pointers to pre-existing vertex structures, and null pointers for new vertex

structures. Then each face is constructed in turn.

Destruction Routines

When the model or some part of the model is no longer needed, the

structures involved must be deleted. Each of the functions described below

\kills" or deletes a structure type, and all its children. Normally, the only

destruction routine called directly by the application is \nmg km", which

is called when the model is no longer needed.

o void nmg km(struct model *m) \Kill Model" deletes an entire NMG

model.

o void nmg kr(struct nmgregion *r) \Kill Region" deletes an nmgregion

and all of its children.

o void nmg ks(struct shell *s) \Kill Shell" removes a shell and all of its

children.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 39

o void nmg kfu(struct faceuse *fu1) \Kill Faceuse" deletes a faceuse, its

mate and the face which they share, as well as all components which

made up the faceuses and face.

o void nmg klu(struct loopuse *lu1) \Kill Loopuse" removes a loopuse, it's

mate, and all children.

o void nmg keu(struct edgeuse *eu) \Kill Edgeuse" removes an edgeuse,

and its mate from a radial edge, and deletes them. If these were the last

radial uses of the edge, then the edge structure and children are deleted

as well.

o void nmg kvu(struct vertexuse *vu) \Kill Vertexuse" removes a ver-

texuse from the list of uses of the vertex and deletes the vertexuse struc-

ture. If this was the last use of that vertex, the vertex structure and

children are deleted as well.

Manipulation Routines

These routines mold and manipulate the NMG structures.

o void nmg face g(struct faceuse *fu, plane t p) \Face Geometry construc-

tion" assigns a plane equation to the face of the given faceuse.

o void nmg face bb(struct face *f) \Construct Bounding Box for Face" by

looking at (and computing) the bounding boxes for all the constituent

loops.

o void nmg vertex gv(struct vertex *v, pointp t pt) \Assign vertex Geom-

etry" to a vertex.

o void nmg loop g(struct loop *l) \Compute Geometry (bounding box) for

loop".

o void nmg shell a(struct shell *s) \Compute Shell Attributes" (bounding

box) for a shell.

o void nmg region a(struct nmgregion *r) \Compute Region Attributes"

computes the bounding box for the nmgregion from all constituent shells.

o void nmg movevu(struct vertexuse *vu, struct vertex *v) \Move Ver-

texuse" causes a vertexuse to be moved to a new vertex.

o void nmg unglueedge(struct edgeuse *eu) \Un-Glue Edge" removes an

edgeuse and its mate from a shared radial edge, and creates a new edge

for them to share.

o void nmg moveeu(struct edgeuse *eudst, struct edgeuse *eusrc) \Move

Edgeuse" causes an edgeuse \eusrc" and its mate to become uses of a

new edge. In the new edge, \eusrc" will be immediately radial to \eudst"

in the radial edge list of that edge. If \eusrc" and its mate were the last

uses of the old edge, then the old edge structure and it's children are

deleted.

o void nmg moveltof(struct faceuse *fu, struct shell *s) \Move �rst wire

Loop in shell to an existing Face". Not normally called by applications

programmer. The �rst wire loop (loopuse pair) of the speci�ed shell is

moved to the given faceuse (and faceuse mate).

40 Michael John Muuss and Lee A. Butler

o void nmg jv(struct vertex *v1, struct vertex *v2) \JoinVertexes" causes

all uses of vertex \v2" to become uses of \v1". Vertex \v2" is deleted.

o void nmg isect faces(struct faceuse *fu1, struct faceuse *fu2) \Intersect

Faces" causes two faces to be intersected and the line of intersection to

be identi�ed and inserted.

o void nmg mesh faces(struct faceuse *fu1, struct faceuse *fu2) \Mesh

Faces" performs the topological and geometrical meshing of two faces

which share one or more edges of intersection. When complete, oppor-

tunities for edge sharing between the two faces will be taken advantage

of, and radial edge orientations of the two faces will be appropriate for

all shared edges.

o struct model *nmg �nd model(long *magic p) \Find Model" returns the

parent model for a given structure. The structure is identi�ed by a

pointer to its \magic number".

o struct vertexuse *nmg �nd vu in face(point t pt, struct faceuse *fu,

fastf t tol) searches for a vertex with geometry coordinates within toler-

ance in a particular face.

o struct nmgregion *nmg do bool(struct nmgregion *s1, struct nmgregion

*s2, int oper, fastf t tol) performs a speci�ed boolean operation using

the indicated regions as inputs. Produces a region as output.

o int nmg ck closed surf(struct shell *s) \Check for Closed Surface" tries

to determine if the parameter shell represents a closed object.

o int nmg manifold face(struct faceuse *fu) returns a non-zero value if the

parameter face represents a part of a closed surface.

o int nmg demote eu(struct edgeuse *eu) turns an edgeuse into a pair of

loopuses. Each loopuse consists of a single vertexuse. The edgeuse and

its mate are deleted, and if they were the last use of their edge, the edge

and its children are delete.

o int nmg demote lu(struct loopuse *lu) turns a loop into a collection of

wire edges. The loopuses of this loop are deleted, as is the loop and its

children.

o void nmg simplify loop(struct loopuse *lu)

void nmg simplify face(struct faceuse *fu)

void nmg simplify shell(struct shell *s) all serve to simplify the topology

of the faces in a shell. Unnecessary edges within a face are deleted, and

the adjacent loops are joined together. This service is primarily required

to simplify the topology generated as a result of boolean operations.

o void nmg jl(struct loopuse *lu, struct edgeuse *eu) \Join Loops" com-

bines loops which share a common edge. Useful primarily as a support

routine for the \Simplify" routines.

o char *nmg identify magic(longmagic) returns a string that describes the

name of the structure type associated with the given magic number. This

is most useful in program diagnostics associated with error detection and

recovery.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 41

The Tessellators

The job of a tessellator is to convert a given solid primitive into a faceted

approximation stored in NMG data structures. There are two aspects to

this conversion: establishing the topology of the approximation, and then

generating the geometry to associate with the approximate topology.

Conversion of a faceted primitive solid will be exact, with each face,

edge, and vertex of the NMG representation one-to-one with a topological

element in the original representation. In general, e�ecting the conversion

of a faceted primitive to the NMG representation is direct. Di�culties

usually arise only when the original representation did not contain enough

topology information to permit direct generation of the NMG topology.

For example, the PolySolid\bag of polygons" solid contains a collection of

faces which together are known to enclose one or more volumes, yet there is

absolutely no explicit topology. For this solid, the tessellator routines must

rediscover the topology of the original object. This is done by a geometric

comparison of each vertex against all the vertices previously encountered

in this solid. If the vertex has been previously seen, then a new use of

the existing vertex is made. If the vertex is unique, then a null pointer is

added to the parameter list for nmg cmface() so a new topology vertex

can be created. When all the vertices of a face have been processed in this

manner, the list of vertices are passed to the routine nmg cmface(), which

connects all the vertices together with edges. If an edge existed between

two vertices in the new face, then a new use of the existing edge is created,

otherwise an entirely new edge is created. Finally, these edges are formed

into a loop, and the loop is embedded in a new face.

Error Tolerances

Conversion of curved, implicitly de�ned primitive solids to a faceted rep-

resentation will necessarily be inexact. To provide control over the nature

and magnitude of the errors that may be introduced by the faceted approx-

imation used in the tessellation, three types of tolerances are passed to the

tessellator. The absolute tolerance, which limits the maximum permissi-

ble di�erence between any point on the tessellation and the corresponding

point on the original solid, is expressed as an absolute distance. In the

subroutine interface, this absolute distance is passed as a double precision

oating point value, given in millimeters. In the mged user interface, this

absolute distance is speci�ed in terms of the current working units (millime-

ters, inches, etc). The absolute tolerance permits users to make absolute

statements about the maximum distance error contained in any tessella-

tion. For example, using this mechanism it is possible to ensure that no face

deviates from the true surface by more than 2 mm. The relative tolerance

also limits the maximum error of any point, but is expressed as a fraction

between 0.0 and 1.0 of the diameter of the bounding sphere which encloses

42 Michael John Muuss and Lee A. Butler

the original solid. This relative tolerance permits users to make statements

about the relative error contained in any tessellation. For example, this

could ensure that no face deviates from the true surface by more than �ve

percent of the size of the solid. The normal tolerance limits the maximum

angular error of the surface normal. This normal tolerance permits users to

make statements about the accuracy of the surface normals. For example,

this could ensure that the surface normal of all faces do not deviate from

the exact surface normals of the corresponding points on the original solid

by more than 5 degrees.

The tolerances can be set singly or in any combination. If no tolerances

are set, each tessellator module establishes a default minimum tessellation;

for example, most tessellators will not approximate a circle with fewer

than 6 line segments. If more than one tolerance is speci�ed, then on

a solid by solid basis, the most restrictive tolerance is applied. If both

an absolute and a relative tolerance are given, then large solids would

most likely be tessellated to satisfy the absolute tolerance, while small

solids would most likely be tessellated to satisfy the relative tolerance.

For example, if an abs=10mm and rel=1%, a large sphere of diameter

1000mmwould be subjected to the absolute tolerance, while a small sphere

of diameter 10mm would be subjected to the relative tolerance.

Tessellating the Torus

The topology of the torus is a rectangular mesh where the \edges" of

r

r e

Error Distance

γ

θ

D

C

B

A

Figure 12 { Calculating Arc/Chord Error

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 43

the mesh are connected together, side to side, and top to bottom. This

can be visualized as follows: if the torus is cut once and straightened, it

becomes a right circular cylinder. If the cylinder is cut longitudinaly and

uncurled, it becomes a rectangle. The \length" of this rectangle is the

distance around the rim of the torus and is traversed as the angle � varies

from 0 to 2�. The \width" is the distance around one cross-section of the

torus and is traversed as the angle � varies from 0 to 2�. The torus can

also be constructed by constructing a circle in � with radius r

2

, and then

sweeping that circle out around � with radius r

1

.

The torus tessellator must determine the minimum number of facets

that can be used to represent the torus while still satisfying the given error

tolerances. Fortunately, the two parts of the torus are separable, and both

parts are circles, so this problem reduces to determining the fewest number

of line segments that can be used to approximate a circle while still meeting

the error tolerances.

Consider a triangle inscribed inside a circle of radius r. One vertex of

the triangle is at the center of the circle O; the other two touch the circle

at points A and B, as shown in Figure 12. The line segment AB subtends

an angle

6

AOB = �

The point of maximum error is C, the midpoint of AB:

C =

A+ B

2

6

AOC =

�

2

=

Extending the line OC until it hits the circle results in the point D.

Satisfying the surface normal tolerance is the easiest. If the circle is

divided into line segments, the surface normal is exact at the line segment

midpoint C, and has the largest error at the endpoints of the line segment:

A and B. The surface normal error at the endpoints is

�

2

. The relationship

between the number of line segments n and the angle � that each line

segment subtends is

n =

2�

�

Thus, to satisfy a surface normal error tolerance of ntol, the error at the

endpoints

�

2

� ntol

Therefore the minimum number of line segments that can be used is

nseg =

2�

2ntol

=

�

ntol

44 Michael John Muuss and Lee A. Butler

The face distance error inherent in the linear approximation of the circle is

e = jD � Cj = r(1� cos

�

2

)

Thus, to meet the face distance error tolerance, a choice of � must be made

so that e satis�es the relation

e � dtol

The maximum value of � which can be used is

� = 2cos

�1

(1�

dtol

r

)

and the minimum number of line segments that must be used is:

nseg =

2�

�

=

�

cos

�1

(1�

dtol

r

)

To e�ciently satisfy the maximum surface error tolerance, it is necessary

to �nd the minimumnumber of line segments that must be used in each of

the \length" and \width" directions. The appropriate radius is substituted

into the formula for nseg to determine nlen (the number of segments needed

in the length direction), and to determine nw (the number of segments

needed in the width direction). The largest of either of nlen or nw or the

number of segments required to satisfy the surface normal tolerance is used.

All the vertices on the surface of the torus can be generated by varying

len from 0 to nlen while also varying w from 0 to nw, and computing:

� = w

2�

nw

� = len

2�

nlen

R = Acos(�) + Bsin(�)

P = V + R+ r

2

R

jRj

cos(�) +Hsin(�)

where

V vertex point at the center of the torus

A, B perp. vectors, lie in the plane of the torus, de�ne \length"

G, H perp. vectors, de�ne \width" direction

H normal to plane of the torus

P surface point

r

2

radius of torus around the rim

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 45

E

/\

/ \

G/____\H

/\ /\

/ \ / \

/____\/____\

D I F

Figure 13 { Initial Octahedron Face

Tessellating the Ellipsoid

An ellipsoid is de�ned by a vertex point V at the center and three mutually

perpendicular vectors A, B, and C which de�ne the eccentricities. Through

an a�ne transformation, the ellipsoid can be mapped to a unit sphere

located at the origin. The algorithm begins by approximating the sphere

by an octahedron, with the six vertices at V �A, V �B, and V �C. Each

face of the octahedron is a triangle 4DEF , as in Figure 13.

Points DEF line on the surface of the unit sphere. Pick the points GHI

as the midpoints of the three edges of ABC. If each of these points GHI

are viewed as vectors from the origin in the direction of the surface of the

unit sphere, then re-normalizing the vectors to have unit length will cause

the points to lie on the surface of the unit sphere. Consider each of the

four new triangles 4DGI, 4GHI, 4IHF , and 4GEH recursively until

the tolerance is satis�ed.

It is tempting to consider an adaptive subdivision algorithm, so that

when the magnitudes of A, B, and C are not equal, the areas of higher

curvature could be tessellated more �nely. Unfortunately, it is not possible

to use di�erent levels of subdivision without introducing \cracks" into the

tessellation. Consider the case where triangle 4GEH needs further sub-

division, but triangles 4DGI, 4GHI, and 4IHF do not, as in Figure

14. The problem here arises because the edge GH in 4GHI will no longer

match up with edge GL in 4GJL and edge LH in 4LKH, because point

L will have been normalized out to meet the unit sphere. While cracks

could be prevented with by splitting 4GHI into 4GLI and 4LHI, this

would produce an irregularity in the topology of the tessellation that would

make a non-recursive formulation signi�cantly more di�cult.

Let

r = max(jAj; jBj; jCj)

Then, the distance tolerance dtol can be expressed as a maximum angular

(normal) tolerance as before:

� = 2cos

�1

(1�

dtol

r

)

46 Michael John Muuss and Lee A. Butler

E

/\

/ \

J/____\K

/\ /\

/ \ / \

G/____\/____\H

/\ L /\

/ \ / \

/ \ / \

/ \ / \

/ \ / \

/__________\/__________\

D I F

Figure 14 { Partially Subdivided Octahedron Face

The �nal tolerance to use is the more strict of the surface normal tolerance

ntol and the distance tolerance:

tol = min(ntol; �)

Thus, the number of triangles to be used around any one circumference of

the ellipsoid will be

nseg =

�

ntol

However, because the initial approximation to the ellipsoid is an octahe-

dron, the number of segments must be a multiple of four.

The coordinates of all the vertices of the tessellation of a unit sphere with

nseg triangles are computed. Each of these coordinates is then transformed

back into the coordinate system of the ellipsoid.

Evaluating Booleans

To evaluate a boolean combination of two tessellated solids, three distinct

sub-operations must be performed. First, all elements of the two shells must

be intersected. Second, every element in the two shells must be classi�ed

as in, on, or out. Finally, all undesired elements are eliminated.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 47

Intersection Operations

The �rst step in the boolean operation process is the intersection and cut-

ting of the two shells with respect to each other. This process is summarized

in Figure 15.

The process of comparing the face bounding boxes involves a check to

see if the bounding boxes overlap along the line of intersection, not just

whether they overlap at all. This is important for reducing the number of

face intersections performed.

When the bounding boxes of two faces overlap, they must be intersected

with each other. The plane equations of the two faces are compared for

equality. If the two faces are coplanar, they must have their loops inter-

sected using a two dimensional polygon clipping approach. If the two faces

are not coplanar, they must be intersected so that the faces will share an

edge at the intersection. A list of all vertexuses or points which are on the

line of intersection between the two planes is �rst generated. To do this,

each edge of face A is intersected with the plane of face B and each edge

of face B is intersected with the plane of face A.

This intersection process takes the following form: If an endpoint of the

edge is either topologically or geometrically in the plane of the other face,

that vertex is registered in the list of points on the line of intersection.

If the span of the edge crosses the plane of the other face, then the edge

is divided into two edges. The new vertex which divides the edge lies on

if bounding boxes of shell A and shell B overlap

for each face in shell A,

if bounding box of face A overlaps bound box of shell B

for each face in shell B

if bounding boxes of face A and face B overlap

intersect edges of face A with plane of face B

intersect edges of face B with plane of face A

insert new topology & perform meshing

for each wire edge in shell A,

if wire edge A overlaps bounding box of shell B

for each face in shell B

if edge A intersects face B

if necessary split edge at plane,

insert vertex at plane intersection into face

for each wire edge in shell B

if wire edges intersect

create any needed verticies in both wire edges

Figure 15 { Shell Intersection Procedure.

48 Michael John Muuss and Lee A. Butler

Separate loop joinSame loop cut

After segment insertion

Before segment insertion

Shared edge

Figure 16 { Segment Insertion: Both Points in Face

the line of intersection and is added to the list of points along the line of

intersection.

After each face has been intersected with the plane of the other face, the

resulting list of points of intersection is sorted geometrically along the line

of intersection. The list is then used to determine which segments of the

line of intersection are shared between both faces. Such segments must be

added to each face. For each face, a segment to be added will fall into one

of three categories: (1) both endpoints are in the face, (2) one endpoint is

in the face, or (3) no endpoints are in the face. In the �rst case, a check is

made to make certain that the edge does not already exist. If it does not,

then each of the two endpoints are examined. If they are part of the same

loop of the face, then that loop is divided into two separate loops, which

share a common (new) edge. If the vertices belong to di�erent loops, then

an edge which connects the two loops is created, and the two loops are

joined into a single loop. Examples of each of these cases can be seen in

Figure 16.

When only one of the endpoints exists in the face, the loop which contains

the existing vertex is extended to include the new point. This can be seen

in Figure 17. Finally, when neither of the segment endpoints exists in the

face, a new interior loop must be created in the face as in Figure 18.

When all of the appropriate topology has been inserted into the faces,

the topology of the two faces is connected so that edges and vertices which

can be shared between the faces are indeed shared. This process consists

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 49

Before segment insertion

Shared edge/vertex

After Segment insertion

Figure 17 { Segment Insertion: One Point in Face

mainly of combining vertexuses onto a common vertex, and arranging the

radial-edge orientation of edgeuses about a shared edge.

Wire edges of the shell must also be intersected with the other shell.

Wire edges exist either as part of a wire loop, or as an individual wire edge.

Both types are processed in the same manner. Each edge is compared to

the bounding box of the other shell. Where there is overlap, the edge is

intersected with each face and wire of the other shell. If the edge intersects

any of these, the edge is split if necessary, and the point of intersection is

topologically linked to the other face or wire.

Object Classification

When all of the intersections have been performed, every object in each

shell must be classi�ed with respect to the other shell. Each face, loop, edge,

and vertex must be classi�ed as being inside, on the surface of (referred

to here as \on"), or outside of the other shell. Here the topology becomes

helpful. This process is easier if each shell is classi�ed in turn against the

other shell. For notational clarity, we refer to the classi�cation of an object

in shell A with respect to shell B.

The classi�cation of all structures is stored in a single table. The \index"

�elds in the NMG structures serve as o�sets into the table. Once the

classi�cation is complete, an individual structure's classi�cation can be

Before segment insertion After Segment insertion

Figure 18 { Segment Insertion: No Points in Face

50 Michael John Muuss and Lee A. Butler

quickly gotten by using the \index" �eld from the structure as the o�set

into the table of classi�cations.

Vertex Classi�cation

If by, referring to the topology, it can be determined that the vertex has

previously been classi�ed against shell B, then obviously any vertexuse of

that vertex which is in shell A shares the same classi�cation. If it has not

previously been classi�ed, it is classi�ed now.

By looking at the other vertexuses of a vertex, it is possible to determine

if there is a use of the vertex in the topology of shell B. If such a use exists,

then the vertex, and the current vertexuse are classed as being \on" shell

B.

If the topology does not indicate that the vertex is \on" shell B, the

geometry must be used to determine if the vertex is \inside" or \outside"

of shell B. First of all it should be obvious that all vertices which lie outside

of the bounding box of shell B are easily classi�ed as being outside of shell

B. Should this fail to classify the vertex, a raytracing approach is employed.

A single ray is \�red" from the vertex along an arbitrary line and is

intersected with all of the faces in shell B. Typically, this line will be along

one of the major axis directions, although it may be useful to send the ray

in some other, non-aligned direction to reduce the probability of hitting

the edge of a face or hitting the plane of a face edge-on. The number of

Manifold faces which the ray encounters before leaving the bounding box

of shell B is counted. If the number of crossings is odd, then the vertex is

classi�ed as \inside" of shell B. While this appears simple at �rst glance,

there are several problems involved in the raytracing approach which are

worth noting: (1) identifying a face as either manifold or non-manifold, (2)

recognizing an actual hit on a face, and (3) coping with a ray hit on an

edge or a vertex.

Manifold Faces

If a face has any dangling edges, it can be quickly classed as being non-

manifold. This is a relatively quick check. If for each edge of the face, there

exists an odd number of other face-loops of manifold faces of the same shell

adjacent to the same edge, then the face is manifold. This is a tedious check

which requires an exhaustive analysis of most, if not all of the faces of the

shell to determine if one face is manifold. While this is important for some

cases, most of the time it is not necessary to perform a full manifold check

of the radial faces. A check for dangling edges of radial faces is su�cient.

Intersecting a Ray and Face

Since faces consist of both interior loops (holes in the face) and exterior

loops, it is important to be sure that a ray which hits the plane of a face

actually hits inside the surface area of the face as well. The in/out status

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 51

A

5

4

3

2

1

B

V2

V1

N1

N2

Figure 19 { Raytracing Hit-Points

for the hit-point is determined by the loop which has the sub-element (edge

or vertex) closest to the hit-point.

If the hit-point is closest to an exterior loop of the face, then (a) the ray

hits the face if the point is inside the loop, as in hit-point 1 in Figure 19A,

and (b) the ray misses the face if the point is outside the loop. Likewise, if

the hit-point is closest to an interior loop, then (c) the ray misses the face

if the hit-point is inside the loop, as in hit-point 3 in Figure 19A, and (d)

the ray hits the face if the hit-point is outside the loop, as in hit-point 2 in

Figure 19A.

Intersecting a Ray and Edge Or Vertex

When the hit-point of the ray lies on an edge or vertex of a face, further

logic must be used to determine whether or not a hit actually occurs. If the

ray hits an edge of a loop in a face, and there is another loop of the face of

the same type (interior/exterior) adjacent on the edge, the hit is registered

as if the ray had intersected the interior of the loop. For example, hit-point

4 in Figure 19A is not a hit on the face because the edge is shared between

two interior loops of the same face. On the other hand hit-point 5 in Figure

19A is a hit on the face because the edge being hit is shared between two

exterior loops of the face.

If the edge is actually a boundary of the face, then the ray must be

compared to the surface normals of the faces involved. For example, the

ray V1 in Figure 19B scores a single hit as it encounters the edge between

52 Michael John Muuss and Lee A. Butler

the two faces. Ray V2 does not score a hit. It is important to note that

only one hit may occur for the pair of faces, since it was the edge between

them which was encountered. The situation becomes slightly more complex

when there are more than two faces of the shell sharing the edge. In this

case, the hit/miss status for each pair of faces is determined at the time the

edge is �rst encountered, and all faces are marked as having been processed.

Edge Classi�cation

Once all the vertex structures in shell A have been classi�ed against shell

B, it is possible to classify the edges. First cut classi�cation of edges is

done by referring to the classi�cation of the endpoints. If one or more of

the endpoints is not \on" shell B, the edge takes it's classi�cation from

that vertex. If both endpoints are classi�ed as \on" shell B, the mid-

point of the line segment is computed, and classi�ed using the raytracing

technique described in the previous section. An edge with endpoints inside

and outside shell B indicates an error in the intersection process. Table 1

summarizes the classi�cation of edges.

Endpoint Edge

classi�cations classi�cation

both out out

out/on out

both on use mid-point ray

in/on in

both in in

in/out intersection error

Table 1 { Edge Classi�cation by Endpoint Classi�cation

Loop Classi�cation

A loop of a single vertex inherits the vertex's classi�cation. A loop of edges

which contains an edge which is not \on" shell B inherits that classi�cation.

For example, if a loop contains an edge classi�ed \inside" shell B, then the

loop is classi�ed \inside" shell B. A loop with edges both inside and outside

shell B indicates an error in the intersection process. If all edges of a wire

loop are classi�ed as \on" shell B, the loop is classi�ed as \on" shell B.

There are other conditions required for a face loop to be classi�ed as being

\on" shell B. First, there must exist a loop in the topology of shell B which

has exactly the same set of edges. Secondly, the loop must be classi�ed

as being either \shared" or \anti-shared". A \shared" face loop not only

has a counterpart in the other shell, but the normals of the faces of which

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 53

the loops are a part of are pointing in the same direction. A loop is \anti-

shared" when the surface normals of the parent faces point in opposite

directions.

Face Classi�cation

Faces are not classi�ed except to the extent to which the loops which make

up the face are classi�ed.

Boolean Evaluation

After all the topological elements in objects A and B have been clas-

si�ed, the boolean evaluation simply becomes a task of deciding which

elements to retain, and which to destroy. Every element has been classi�ed

with respect to both objects A and B, and was assigned one of eight com-

bined classi�cations. The object from which the element originally came

from is always given an on classi�cation. Elements from A are classi�ed

as one of onAinB, onAonBshared, onAonBanti-shared, onAoutB,

while elements from B are classi�ed as one of inAonB, onAonBshared,

onAonBanti-shared, or outAonB. All of these possibilities occur in the

two example object pairs (four blocks viewed end-on) in Figure 20; the

important face-loop classi�cations are appropriately labeled.

For the two blocks on the left of Figure 20, the bottom center face-

loop exists in both objects A and B, and the orientation (outward surface

normal) of the face-loop in both objects is the same (pointing towards the

bottom of the page), so the face-loop is classi�ed onAonBshared. For the

two blocks on the right of Figure 20, the middle face-loop also exists in both

objects A and B, but the orientation of the two face-loops are opposite, so

this face-loop is classi�ed onAonBanti-shared.

onAonB,
onAonB,

anti-shared
shared

outAonBonAinBinAonB

onAoutB BA

B

A

Figure 20 { Classi�cation of Example Objects

54 Michael John Muuss and Lee A. Butler

Figure 21 { Subtraction Performed on Example Objects

A B A { B A [B A \ B

on in kill kill retain

on on shared kill retain retain

on on anti-shared retain kill retain

on out retain retain kill

in on retain+
ip kill retain

on shared on kill kill kill

on anti-shared on kill kill kill

out on kill retain kill

Table 2 { Boolean Evaluation Decision Table

Because there are only eight possible classi�cations, the appropriate ac-

tion for the boolean evaluation algorithm can be easily tabulated. These

actions are found in Table 2. Indeed, this exact same table exists in the

source code for the boolean evaluator in �le nmg eval.c. Placing these

actions into a table permits a complete separation of policy and mechanism

in the implementation. The policy is encoded in the entries of the table,

and the mechanism is embodied in the code of the subroutine. This has

two main bene�ts. First, code to perform any one action exists in only

one place, ensuring consistent treatment of all cases. Second, this o�ers

the potential for adding more boolean operations at a later date, simply

by supplementing the table with another column.

Consider �rst the case of the subtraction operation, A minus B. The

intent is to retain every part of A that is in only A, to kill every part of A

that is also in B, and to kill every part of B. The policy just stated is imple-

mented by the tabulated rules for processing all the topological elements.

The entry for an element which has classi�cation on A and out B has a

table entry of \retain" (denoted more suscinctly as onAoutB=retain).

This rule preserves the main body of A. onAinB=kill and onAonB-

shared=kill because these elements are in B, and therefore represent a

portion to be subtracted out. outAonB=kill to eliminate unused parts of

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 55

B. onAonBanti-shared elements are retained, because they are on the

surface of A and on the surface of B, where the two surfaces touch. To

implement subtraction, this case has to be de�ned as either (a) shaving an

in�nitesimally thin layer o� of the surface of A, or (b) a no-op, where the A

surface is retained unmodi�ed, and the B surface is killed. Because choice

(a) would modify the volume of the resulting solid, it can not be used;

instead, choice (b) has been selected. This policy is implemented in these

three table entries: onAonBanti-shared=retain, onBonAshared=kill,

and onBonAanti-shared=kill. Finally, elements which have been classi-

�ed as inAonB are listed in the table as \retain+
ip". The surface has to

be retained because it will become part of the new boundary between A and

the outside world. However, the existing surface normal points into solid

A, re
ecting the fact that this surface was originally part of the exterior of

solid B, so the surface normal must be
ipped. The results of performing

a subtraction on the two sample objects is illustrated in Figure 21.

While the discussion of the table entries has been made in terms of

surfaces de�ned by face-loops, the same reasoning and actions apply to

the inferior topological elements: wire-loops, loop-edges, wire-edges, edge-

vertices, and lone-vertices. The overall strategy is to process all the topolog-

ical elements of object A, and then to process all the elements of object B.

The meat of the algorithm exists in internal subroutine nmg eval shell(),

which starts by processing the loops in each face. Any loopuse which has

a classi�cation that maps to an action of \kill" is demoted into a collec-

tion of wire edges using nmg demote lu(). The loop is demoted rather

than killed so that edges and vertices that are shared in common with both

objects can be properly considered later in the subroutine. If none of the

loops in the face are retained, then the faceuse is killed using nmg kfu().

If some loops in the face are retained, then the faceuse is retained; if the

faceuse came from object B then it is moved to object A, the faceuse's mate

is also moved to object A, and the face normal is
ipped. The algorithm

then proceeds down from faces to processing wire-loops. If the loopuse has

a classi�cation that maps to an action of \kill" then it is demoted into a

collection of wire edges, otherwise it is retained, and moved into object A if

necessary. Next, wire-edges are processed. If the edge is marked `kill" it is

demoted into vertices using nmg demote eu(), otherwise it is retained,

and moved into object A if necessary. Finally, lone-vertices are processed.

Vertices marked \kill" are disposed of using nmg kvu(). Because vertices

are 0-manifolds there is no lower topological element to demote them to.

Consider next the case of the union operation, A [B. The intent here

is to retain all elements that are on the exterior of either A or B, while

eliminating any interior structure or redundant elements. More precisely,

for solid modeling, the formula for union is interpreted as

A [B := (A �B) + (B � A)

56 Michael John Muuss and Lee A. Butler

Figure 22 { Union Performed on Example Objects

where the + operation is a simple combination, or sum, operation. The

elements that are on the exterior of exactly one of either A or B are classi�ed

as onAoutB and outAonB and are retained. Elements that are on the

exterior of both A and B appear twice, �rst as onAonBshared which is

retained, and again as onBonAshared, which is killed (to avoid having

the element become duplicated in the result). Interior structure is found

in all elements classi�ed as onAinB, inAonB, plus any anti-shared faces

onAonBanti-shared and onBonAanti-shared. All elements with these

classi�cations are killed. The result of performing the union operation on

the two example objects is shown in Figure 22.

Finally, consider the case of the intersection operation, A \ B, as shown

in Figure 23. The intersection operation retains all elements that are simul-

taneously part of both A and B, while discarding the excess. Clearly, ele-

ments classi�ed onAonBshared and onAonBanti-shared are elements

common to the two objects and should be retained; elements classi�ed

onBonAshared and onBonAanti-shared need to be killed to prevent

duplication. The elements exterior to one of the objects are classi�ed

onAoutB and outAonB and should also be killed. Previously interior

structure onAinB and inAonB should also be retained, as these elements

will form the new boundary when the non-common elements have been

removed.

The technique just described for evaluating a boolean formula is simple

to program and debug, works reliably, and is easy to understand. Storing

all the policy decisions in a table makes the algorithm very straightforward.

Figure 23 { Intersection Performed on Example Objects

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 57

User Interface

The majority of a BRL-CAD user's contact with the new non-manifold

geometry capability will be through the Multi-Device Graphics Editor

(mged) [APPL88]. This is the program that is used to rapidly view exist-

ing geometry in wireframe form, to create new geometry and update ex-

isting shapes, to select viewpoints for ray-tracing runs, to select keyframes

for animation sequences, and to preview animation sequences in wireframe

form.

At any time in an mged session, the user may add one or more objects

to the active model space, using the command

mged> e object

If the viewing cube is suitably positioned, the newly added subtrees

become visible on the display. The normal mode of operation is for users

to work with wireframe displays of the unevaluated primitive solids. These

wireframes can be created from the database very rapidly.

On demand, the user can request the calculation of approximate bound-

ary wireframes that account for all of the boolean operations speci�ed along

the arcs of the directed acyclic graph in the database. The evaluation of

the approximation is performed by tessellating each of the primitive solids

into an NMG object meeting the current tolerance, and combining them

according to the indicated boolean operations. Each edge and vertex in

the resulting NMG object are placed in a struct vlist chain (by subrou-

tine nmg r to vlist()) and drawn on the mged display. This operation

is invoked with the command

mged> E object

or

mged> ev -w object

Evaluating the surface takes somewhat longer than creating wireframes

of the unevaluated primitive solids, so it is not used by default for viewing

large assemblies. However, it is quite reasonable to evaluate the surface

whenever the design has reached a new plateau, or when a detailed exam-

ination of a complex part is required. When viewing objects of modest

complexity at loose tolerances, the evaluation process is quite rapid.

Note that the evaluated boundary wireframes are not stored in the

database, and are primarily intended as a visualization aid for the designer.

Polygons

On those hardware platforms where polygon drawing capabilities exist, it

is possible to have a
at-shaded polygonal rendering of database objects

drawn. This operation is invoked with the evaluate command

mged> ev object

58 Michael John Muuss and Lee A. Butler

Once the polygonal rendering of the object is on the screen, it can be

rotated in real time. This capability gives the designer the opportunity to

more fully appreciate the complex shape which has been created, and to

judge whether the evaluated shape matches the intended design.

On hardware platforms which have hardware support for rendering lit

and shaded polygons with multiple light sources (such as the Silicon Graph-

ics 4D workstations), it is possible to activate the hardware lighting model.

This provides a much more realistic rendition of the evaluated objects, and

also gives clues about face normals.

When further used in conjunction with hardware clipping planes, the

evaluated solids can provide signi�cant new insight for the designer.

Surface Normals

As an aid to the user, an option to the ev command exists to add surface

normal vectors to the evaluated surface polygon display. The outward

pointing surface normals are drawn as single vectors from the centroid of

each polygon. They resemble \whiskers" on the polygons. This option is

invoked with the command

mged> ev -n object

If the polygon rendering of the object shows all the faces, but no surface

normal vectors can be seen, then this suggests that either an error exists in

the database entry for this object, or an internal software error in librt has

been encountered. In either of these cases, the vectors should be pointing

inside the solid object. This can be easily veri�ed by using the hardware

clipping planes to permit the inside of the solid to be seen. If the vectors

are on the inside, then the surface normals have become reversed.

Tolerances

As discussed the in section on tessellation, there are three types of tol-

erances that are user selectable. The absolute tolerance ensures that no

point on the polygonal approximation will be further away from the true

surface than the tolerance value. The relative tolerance ensures that no

point on the polygonal approximation will have a distance from the true

surface which is greater than the given fraction of the primitive object's

size. The surface normal tolerance ensures that no face normal at any point

on the polygonal approximation will di�er from the true surface normal at

the corresponding point on the true surface by more than the indicated

angular error. If multiple tolerances are given, the tesselator is required

to satisfy all of the tolerances. This enables the user of the approximation

to make �rm statements about the upper bound on the tessellation error

produced.

When mged is �rst started, a relative tolerance of one percent is the

default tolerance. At any time the tolerance settings can be examined,

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 59

using the tol command. Thus, immediately after starting mged, the tol

command would show:

mged> tol

Current tolerance settings are:

abs None

rel 0.01 (1%)

norm None

The absolute tolerance speci�cation is given in the current working units,

and is converted internally into millimeters. For example, adding an abso-

lute tolerance of three millimeters might be done like this:

mged> tol abs 3

mged> tol

Current tolerance settings are:

abs 3 MILLIMETERS

rel 0.01 (1%)

norm None

mged> units inches

mged> tol

Current tolerance settings are:

abs 0.11811 INCHES

rel 0.01 (1%)

norm None

The absolute tolerance can be disabled by setting the tolerance to zero (or

a negative number). Providing a tessellation with zero error is impossible;

in general, to create a tessellation of a curved object with zero error would

require an in�nite number of planar faces. Therefore, zero tolerance can

be used as a
ag to turn o� the absolute tolerance requirement.

The relative tolerance speci�cation is given as a fraction between zero

and one.

mged> tol rel .001

mged> tol

Current tolerance settings are:

abs 3 MILLIMETERS

rel 0.001 (0.1%)

norm None

mged> tol rel 0

mged> tol

Current tolerance settings are:

abs 3 MILLIMETERS

rel None

norm None

The surface normal tolerance is given as a positive angle in degrees be-

tween zero and 90. Specifying a normal tolerance of zero is used to disable

60 Michael John Muuss and Lee A. Butler

the normal tolerance requirement. The angular tolerance is echoed back

both in fractional degrees, and as degrees minutes and seconds of arc, as

can be seen in the second example below.

mged> tol norm 2

mged> tol

Current tolerance settings are:

abs 3 MILLIMETERS

rel 0.01 (1%)

norm 2 degrees (2 deg 0 min 0 sec)

mged> tol norm 0.5

mged> tol

Current tolerance settings are:

abs 3 MILLIMETERS

rel 0.01 (1%)

norm 0.5 degrees (0 deg 30 min 0 sec)

If a model included parts that had been created from the boolean com-

bination of both very large and very small primitives, where the small

primitives have a size within a few orders of magnitude of the desired ab-

solute tolerance, it may be desirable to specify both an absolute and a

relative tolerance. For the large objects, the absolute tolerance would en-

sure that the tessellation produced enough facets to represent the surface to

the desired degree of accuracy, whereas the relative tolerance would prob-

ably have generated signi�cantly fewer facets. For the small objects, the

absolute tolerance would probably not generate very many facets, but the

presence of a relative tolerance would ensure that the tessellation produced

a reasonable rendition of the desired shape.

The surface normal tolerance will also limit the error in the tessellation.

However, the number of faces in the tessellation can grow rapidly as the

tolerance is tightened. For example, consider tessellating a single torus.

If no normal tolerance is given, the torus is approximated by 36 (6 � 6)

facets, and a normal tolerance of one degree yields 32400 facets. Other

values are listed in Table 3. While specifying a tight tolerance on the surface

normalwill produce tessellations with a pleasingly smooth surface, the large

number of facets that result can consume substantial amount of memory.

If all tolerances are disabled (including the default one percent relative

tolerance), then each tessellator will choose an object-speci�c minimum

number of facets needed to produce a reconizable rendition of the primitive

solid.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 61

Tolerance Facets

none 36

10 326

5 1296

2 8100

1 32400

0.5 129600

Table 3 { Relationship Between Normal Tolerance and Facets for Torus

Visualizing Boolean Evaluation

During the development of the boolean evaluation software, several graph-

ical displays were created to assist in the debugging process. By default,

this feature is not active, but setting a run-time debugging
ag allows any

user to enable it.

The �rst display shows the process of intersecting two faces together.

The outline of all the loops in the �rst face are drawn. Performing the

intersection operation can result in the addition of new edges. Adding new

edges may also result in the cutting or joining of loops in the face. After the

intersection is complete, the outline of all the loops in the face are drawn

again so that the changes are visible. The display is updated each time.

The second display shows the process of evaluating the boolean formula

on the fully intersected and cut objects. First all the faces are evaluated.

Faces to be retained do not change, but faces that are not part of the

result are demoted to wire loops. This is indicated by the color of the

edges changing to yellow. Wire loops that are not retained are demoted to

wire edges. Wire edges that are not retained are demoted to lone vertices

and disappear from the display. Lone vertices that are not retained are

killed, and vanish from the display.

Even for the boolean combination of two relatively simple overlapping

solids, quite a few face intersections can be computed. However, on typical

workstations it is not uncommon to see ten intersections computed and the

diagnostic wireframes drawn to the screen each second. This high speed

animated review of the intersection and boolean evaluation operations is

very valuable for teaching users how the boolean operations work. It can

also be bene�cial when a user wants to understand the exact process that

created a �nal NMG shape. This capability also served as a very valuable

debugging tool, often permitting an intuitive grasp of programming errors

to be rapidly acquired { pouring through formatted dumps of thousands of

NMG data structures was so di�cult that it was reserved as the technique

of last resort.

62 Michael John Muuss and Lee A. Butler

Creating an NMG Database Object

So far, the primary motivation for computing an approximate surface

representation for an object has been to drive some \post processing" ap-

plication. For example, the ev command computes an approximate surface

representation for the purpose of creating wireframes and shaded polygon

renderings for the user to view inside the mged editor. Approximate sur-

face representations are also used to provide appropriate kinds of input

�les for existing analysis applications. But, the facetization and boolean

combination mechanism that has been constructed is completely general,

and can be used for other purposes also.

There may be circumstances when a designer may wish to take a col-

lection of primitive solids, tessellate and combine them into some faceted

shape, and then store that faceted shape as the �nished design. If the

object of the design task is to create a faceted object, then this can be a

powerful way of accomplishing that task. It can be accomplished with the

facetize command:

mged> facetize newsol oldsol

mged> facetize newreg oldreg

The facetize command takes either a single pre-existing solid, or a single

pre-existing combination of solids (such as a group or region), tessellates

them according to the current tolerance settings, and creates a new solid

in the database that is the facetized result, represented using the NMG

data structures. This newly created solid has exactly the same standing

as any other primitive solid: it can be ray-traced, instanced, or combined

with other solids to create new shapes. However, it is important to note

that no record is made of how this new solid was formed. Thus, when

the parameters of one of the original solids inside the original region oldreg

is modi�ed, this does not result in any changes being propagated to the

facetized version newreg. If this e�ect is desired, it is necessary to delete

newreg and re-execute the facetize command, e.g.:

mged> kill newreg

mged> facetize newreg oldreg

The same procedure must be followed if a di�erent tolerance for the

facetization is desired.

Applications

The capability to produce an explicit approximate representation of the

surface of any object stored in the geometry database exists as a general ca-

pability. Any application program that links to the library librt can make

use of this capability, at any time in the analysis process. Furthermore, use

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 63

of this capability can be simultaneously intermixed with other forms of in-

terrogation supported by the library, so that an application might perform

some operations using the approximate surface description, and other op-

erations using ray-tracing. The application will have no knowledge of the

underlying primitives used to describe the objects in the database, nor will

the application be aware that the library creates the surface description by

extracting the objects from the geometry database, tessellating them into

NMG solids, and then combining them via boolean formulas.

Image Rendering

Prior to the existence of this polygon rendering capability, all renderings

of the geometry databases had to be performed using an optical simulation

program based on ray-tracing. While ray-tracing can produce some very

beautiful images, it can require a non-trivial amount of processing time to

create the images. For the purpose of visualizing the shape of an object, an

image with much lower quality than those produced by ray-tracing would

be entirely acceptable, if they could be produced in signi�cantly less time.

The most immediate application of the explicit surface representation is

for visualization purposes: making an optical image or rendering of objects

in the geometric database. These images can be useful for a variety of

applications. Within the geometry editor mged, a high-speed rendering

of a polygonal approximation of a shape is very useful for inspecting the

model. This permits the user to verify that the design is as it should be.

It is also a very powerful technique for conveying information about the

design to others.

If the display hardware is fast enough, this capability could provide an

improved interface for many geometry editing operations. Presently, mod-

i�cations to solids are performed using the wireframe display. The modi�-

cations are entered either numerically (by entering speci�c parameters), or

interactively (by modifying key parameters through cursor manipulations

on the screen). In both cases, it can occasionally be di�cult to judge by

eye whether the shape created is the desired one. Being able to edit the

object in a (seemingly) solid, rendered form would greatly assist in this

task.

Along the spectrum of rendering quality, there is a point midway between

the low quality of simple hardware polygon rendering, and the high quality

of ray-traced images. This intermediate level of quality can be obtained

using software-based polygon rendering algorithms. These algorithms tend

to run faster than rendering algorithms based on ray-tracing. Especially

when creating animation sequences that require the rendering of hundreds

or thousands of images, having the ability to make this quality vs. speed

tradeo� can be a real boon. This opportunity now exists. An approxi-

mate surface description, tessellated with appropriate tolerances, can be

converted into polygonal form and passed to existing polygonal rendering

software.

64 Michael John Muuss and Lee A. Butler

Thermal Predictions

In the design of vehicles, it is very useful to be able to make predic-

tions about the thermal behavior of the vehicle before the prototype is

constructed. This is important for ensuring passenger comfort and proper

cooling of temperature sensitive components. In military applications, the

patterns of heat radiation are also quite important. If simulation of the

thermal behavior of the vehicle reveals heat distribution that is not con-

sistent with the design criteria, it is a simple matter to modify the vehicle

geometry or substitute di�erent construction materials in an attempt to

improve the situation. Re-running the thermal simulation will assess the

e�ect of these changes.

To simulate the thermal behavior of the vehicle, it is necessary to calcu-

late a complete heat budget for the entire vehicle, in addition to obtaining

the geometry and material property information. The heat budget must

account for all the internal sources of heat such as engines, bearings, and

road wheels, and radiators of heat such as cooling �ns, air vents, and sur-

face area \skin" in contact with the open air. The simulation must also

take into account external thermal loading due to such factors as solar

radiation and contact with the surface of the earth.

Accurate predictive thermal modeling is possible based on solid model-

ing, using three dimensional �nite element mesh (FEM) techniques. The

geometry is subdivided into small isomorphic solid volumes or nodes, and

the thermal properties of the material of each node are recorded. Heat

ow is calculated between all node pairs, where the links between mesh

elements pairs are characterized by thermal coupling coe�cients.

However, a full three dimensional thermal model requires that a great

deal of material property information be known to a reasonable degree of

accuracy. In many cases it is possible to compute a reasonable approxima-

tion to the thermal behavior of a vehicle using a description of the surfaces

of the the vehicle, and some \lump parameters" for the thermal mass of the

various components, and for the primary heat sources. This is the approach

taken by PRISM, the Physically Reasonable Infra-red Simulation Model,

developed by the Tank Automotive Command [REYN89]. Having the ca-

pability for generating an approximate surface description of a BRL-CAD

model will permit vehicle designs stored in a BRL-CAD geometry database

to be converted to a form suitable for analysis by the PRISM application

program.

Once the thermal behavior of the vehicle is predicted, passenger com-

fort considerations can be directly assessed, and no further processing is

required. For predicting a thermal signature, such as might be seen on an

imaging infra-red sensor, it is necessary to take the simulated patterns of

thermal energy radiation and convolve them with the transfer function of

the atmosphere that lies between the vehicle and the sensor to determine

the patterns of energy presented to the sensor. That pattern in turn must

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 65

be convolved with the transfer function of the sensor itself, in order to pre-

dict the signal measured by the sensor. In the design of sensor systems,

it is important to know the nature of vehicle signatures over a range of

detection bands and for a variety of signal-processing schemes [RAPP76,

RAPP83]. Linking BRL-CAD with PRISM provides a method for com-

puting this information as part of the design loop. This linkage provides

opportunities for vehicle designers to retain control over the thermal sig-

natures of their vehicles, as well as giving sensor designers an environment

for testing and re�ning improved sensors.

Radar Predictions

When a metallic vehicle is illuminated with radar energy, that energy is

partly absorbed, and partly dispersed back into the surroundings. Some of

the illumination energy returns to the transmission position, and it does so

carrying an electronic \signature" of the vehicle [TOOM82]. Depending on

the applications envisioned, a vehicle designer is usually interested in either

maximizing the strength of the radar signature (for example, to make boats

and commercial aircraft easier to locate in foul weather), or minimizing the

strength and recognizability of the radar signature, such as in the design

of low-observable (\stealth") aircraft.

A variety of di�erent techniques exist to calculate the predicted radar

signature of a given vehicle. The algorithms based on ray-tracing tend

to handle multi-bounce e�ects very well but are unable to simulate edge

di�raction and creeping wave phenomena. However, algorithms based on

feature-based descriptions of the the vehicle or coarse polygonalizations

tend to handle di�raction and creeping waves acceptably, but are unable

to handle multiple bounce e�ects. The best known technique for the simu-

lation of radar signatures is the Method-of-Moments technique [HARR82,

MOOR84], which requires a polygonalization of the surface of the vehicle

as input.

The nature of the calculation is much like that employed for predicting

heat
ow, as outlined earlier. However, in order to achieve high accuracy,

the Method-of-Moment technique requires that each surface polygon be no

wider than one �fth of one wavelength of the radar signal. The relationship

between frequency f and wavelength � is given by

� =

c

f

=

3� 10

8

m=s

f Hz

Radar frequencies begin in the UHF range with P-band radars trans-

mitting from 225 MHz to 390 MHz, at a wavelength of about one meter

[IEEE76]. A millimeter wave (W-band) radar transmitting at 94 GHz

emits a signal with a wavelength of 3.2 millimeters. A radar transmitting

at a higher frequency would have a very short wavelength indeed. The

relationship between frequency f , wavelength �, and the maximum facet

66 Michael John Muuss and Lee A. Butler

size is given in Table 4. Thus, the method of moments technique requires

exceptionally �ne surface tessellations to be used. Tessellating full size ve-

hicles this �nely produces a gargantuan number of facets. Computing a

solution to problems of such size is barely within the reach of present-day

supercomputers.

Band Frequency Wavelength Facet Size

P 300 MHz 1000 mm 600mm

L 1 GHz 300 mm 60mm

X 10 GHz 30 mm 6mm

W 94 GHz 3.2 mm 0.64mm

Table 4 { Relationship Between Frequency and Facet Size

Interfacing to Other CAD Systems

There are many reasons why the geometric database for a given design

might need to be transferred from the CAD system which originated it to

a completely di�erent kind of CAD system. This might be done because

two di�erent organizations use di�erent software packages and they need

to exchange design �les. Similarly, as part of a comparison of the advan-

tages of di�erent CAD systems, or of di�erent analysis codes, it would be

necessary to import a reference design. Or, some aspects of a design might

be best handled using software uniquely suited to a particular specialized

task, such as numerically-controlled (NC) machinery toolpath generation,

or ISO-compliant blueprint generation.

Having NMG objects as \�rst class citizens" in the geometry database

makes the task of importing faceted geometry fromother CAD systems very

straightforward. Existing faceted objects either with no explicit topology,

or including explicit topology (most commonly using a winged edge repre-

sentation), can be easily converted into an NMG object with full generality

and no loss of topological information. There are a great many systems

that employ faceted representations, so this is a signi�cant capability.

Being able to convert models described using boolean combinations of

the rich set of primitive solids into explicit surface descriptions also enables

transfer of geometry in the outward direction as well. Shapes that are

originally modeled using the existing CSG database can be exported to

other CAD systems for additional processing.

Future Directions

Editing an NMG object

At present, the only way to create an NMG object is via the procedural

interface of librt, either from the mged facetize command, or from an

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 67

outboard database converter or procedural database generator that uses

libwdb, the library for writing databases. Just as it is possible to edit

all the other primitive solids, it seems reasonable to permit users to edit

NMG solids. In principle, a basic NMG editing capability should not be

much di�erent than the existing ARB editing capability, which includes the

ability to move vertices, move edges, and move faces. In addition to these

familiar editing features, some kind of interface to the Euller operators

will need to be created, so that new topological elements can be created,

existing elements can be killed, and sets of existing elements can be joined

together or split apart.

Editing Under Constraints

If the NMG editing capability is implemented in a very general way, it

should be possible to replace most of the existing faceted object editing

capabilities in mged with interfaces to a subroutine that implements edit-

ing of NMG objects under a set of general constraints. For example, when

editing an ARB, if an edge is split, all faces sharing that edge need to

be split as well. When moving a vertex, it must satisfy the constraint of

keeping planar all the faces that contain it. A simple primitive shape like

an ARB4 could be modi�ed and expanded into a much more complicated

topological arrangement, without forcing the user to destroy the original

solid, and re-create the shape using a more general primitive.

Editing B-spline control meshes could also be implemented using this

general NMG editing capability. In this case, if an existing edge was to be

split, in order to create an extra control point, a whole row or column of

extra control points would have to be inserted, to maintain the logically

rectangular topology of the B-spline control mesh.

When an NMG editing operation would complete, a series of simple

checks would see if the topology of the new shape quali�ed as an existing

primitive shape, such as an ARB8 or an ARBN. If so, the new shape would

be stored as the simpler and less general primitive, so as to take advantage

of the more e�cient data storage and faster analysis processing speeds

inherrent in the less general primitive shapes.

This capability should replace a large portion of the existing geometry

editing interface, and should provide geometry builders with unparalleled

exibility and power in creating new shapes.

NMG with Trimmed NURBS Faces

One of the most exciting current research projects at BRL is the exten-

sion of the NMG framework to permit faces either to be planar N-gons, or

trimmed non-uniform rational B-splines (\trimmed NURBS"). This will

permit many of the tessellation operations to be implemented exactly,

rather than as approximations. This will also permit solids to enjoy the

economy of having most faces be represented as planar N-gons, which are

68 Michael John Muuss and Lee A. Butler

very compact and e�cient to process, while those few faces that require

sculptured surface shape control can be represented as trimmed NURBS.

This combination provides both e�ciency and full shape control in the rich

non-Manifold topological framework: a combination that does not exist in

any current commercial CAD system.

Interrogation Extensions

To date, most BRL-CAD applications programs have been implemented

using the ray-tracing paradigm, because of ray-tracing having a lengthy

head start. By choosing the ray sampling density within the Nyquist limit

for a given spatial resolution, many applications based on ray-tracing are

well satis�ed by extracting ray/geometry intersection information. How-

ever, a mathematical ray has as its cross section a point, while physical

objects have signi�cant cross-sectional area. This lack of cross-sectional

area will always lead to some sampling inaccuracies. Applications which

simulate particles or small rocks approaching the model might bene�t from

having a direct cylinder/geometry intersection capability, and applications

which shine beams of light on the model such as spotlights or even highly

collimated light such as laser light might bene�t from cone/geometry in-

tersection capabilities [AMAN84, KIRK86]. Applications which are at-

tempting to simulate wave e�ects might be well expressed in terms of

plane/geometry intersection curves, and structural analysis routines would

probably prefer to obtain the geometry as a collection of connected hyper-

patches.

While recent research has begun to explore techniques for intersect-

ing cylinders, cones, and planes with geometry [KAJI83], ray-tracing and

polygon-based techniques are by far the most well developed approaches.

However, there are several additional type of interface to the model geom-

etry that are likely to be of general applicability.

3-D Finite-Element Volume Mesh

Many forms of energy
ow analysis, such as heat
ow, vibrational analysis

(acoustic energy
ow), and stress analysis require the use of 3-D Finite-

Element Mesh (FEM) techniques. While there has been some work on using

the ray-tracing paradigm to construct �nite element and �nite di�erence

meshes [LAGU89], it has been di�cult to deal with high spatial frequency

(�ne detail) portions of the model. In particular, meshing small diameter

pipes is problematic, since undersampling can cause the pipe to incorrectly

be separated into multiple pieces. In order to improve on the current state

of a�airs, it seems necessary to provide support for the generation of volume

meshes directly as part of the application interface. This would provide the

meshing algorithm to have unrestricted access to the underlying geometry,

the space partitioning tree, and other internal data in order to perform a

better job.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 69

Even more promising still would be a strategy that takes advantage of

the NMG support. A �rst pass might tessellate the model and evaluate the

booleans to produce a surface mesh. The second pass would then take the

surface mesh and �ll the interior (or exterior) volumes with appropriately

chosen volume elements. A very good �t could probably be achieved using

only parallelepiped (\brick") elements and 20-node \superelements". The

brick elements would be used to �ll interior volume that does not border

on a face, and the superelements would be used for volume that contacts a

face. Recourse could be made back to the underlying geometry (perhaps via

�ring a few well chosen rays) to get the curvature of the superelement faces

to match the curvature of the underlying primitive, rather than having to

rely strictly on the NMG planar-face approximation.

Homogeneous Trimmed B-Splines

When support for trimmed NURBS faces has been added to the NMG

capability, it will be possible to represent all existing primitives either with

exact rational B-spline versions, or with very good rational B-spline ap-

proximations. This could be done even for faces that were completely

planar.

This o�ers the hope that it might be possible (albeit memory intensive)

to convert an entire CSG solid model into a homogeneous collection of

non-uniform rational B-spline faces organized in a non-manifold topological

data structure. In addition to the conceptual simplicity a�orded by having

a uniform representation for shape, this a�ords the opportunity to create

new analysis codes that can process curved surfaces, yet at least initially

only have to deal with one kind of shape. This would also provide a very

direct and natural interface to spline based [ROGE90] and Bezier-patch

[BEZI74] based modeling systems.

Analytic Analysis

Given a homogeneous geometric representation such as the Trimmed B-

Splines just discussed which also has an analytic representation, a further

processing capability arises. Rather than interrogating the data base by

means sampling or subdivision techniques, the direct mathematical ma-

nipulation of the source geometry through its parametric representation

becomes possible. Calculations of physical properties requiring integration

over a surface can often be evaluated with greater accuracy using an ex-

plicit analytic calculation than would be provided by numerical evaluation.

While this may be di�cult in general due to the complexity of the para-

metric expression, some classes of surface representations good candidates.

Splines, for example, are piecewise-polynomial functions which have rela-

tively simple Fourier transform representations. Since 2-D spatial Fourier

transforms arise frequently in far-�eld electromagnetic scattering calcula-

tions, exploitation of the parametric spline representation is of interest in

predictive scattering calculations.

70 Michael John Muuss and Lee A. Butler

With the rapidly developing potential of symbolic calculation, treatment

of seemingly impossible formulas resulting from the geometry/physics in-

teraction may become tenable. This could help to reduce the trend towards

employing numerical methods at the onset of a problem and avoid some of

the accompanying instabilities and errors.

Summary

In this paper, a brief history of solid modeling has been presented, with

special emphasis placed on the central role that the solid model plays in

the design and analysis cycle. A detailed look was taken at how di�erent

analysis applications can interrogate the solid model to extract relevant

information. For CSG-Rep solid modeling system, the lack of an explicit

representation for the �nal, developed shapes was identi�ed as a critical

lack.

The systems engineering issues associated with creating an explicit rep-

resentation for CSG solid models without loosing the �delity of existing

geometric databases were considered, and a strategy using Non-Manifold

Geometry data structures was adopted. The implementation of the NMG

data structures and algorithms were presented in signi�cant detail. To

convert existing primitive shapes into NMG objects, the details of several

tessellation algorithms were examined, with particular attention being paid

to the topic of rigorous user-controlled error bounds on the algorithms.

Evaluating boolean combinations of tessellated objects has only recently

become tractable, since the use of the NMG data structures makes these

operations much more straightforward. The details of a three-stage algo-

rithm for boolean evaluation were presented in su�cient detail to permit

the average reader to be able to implement this technique.

Finally, the existing user interface was presented, as well as an overview

of a whole gamut of new applications that will now be able to process

existing CSG geometry databases. This represents a major and important

capability, the true signi�cance of which will only become apparent over

the next few years.

Acknowledgements

The authors would like to thank Dr. Paul Deitz for providing un
agging

support and encouragement for this e�ort. He has established a research

atmosphere that breeds good work, and is fun to work in. The authors

would also like to thank Prof. Dave Rogers for once again persuading us to

take the time to write all this down. Finally, the clarity of the paper was

greatly improved thanks to numerous suggestions by Susanne Muuss and

Christopher Johnson.

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 71

References

[AMAN84] J. Amanatides, \Ray Tracing with Cones," Computer Graph-

ics (Proceedings of Siggraph '84), vol. 18, no. 3, July 1984.

[APPL88] K. A. Applin, M. J. Muuss, R. J. Reschly, M. Gigante, and

I. Overend, Users Manual for BRL-CAD Graphics Editor MGED, BRL

Internal Publication, October 1988.

[BEZI74] P. E. Bezier, Mathematical and Practical Possibilities of

UNISURF, Academic Press, New York, 1974.

[COBB84] E. S. Cobb, Design of Sculptured Surfaces using the B-spline

Representation, PhD dissertation, University of Utah, June 1984.

[COOK84] R. Cook and Porter, L. Carpenter, \Distributed Ray Tracing,"

Computer Graphics (Proceedings of Siggraph '84), vol. 18, no. 3, pp.

137-145, July 1984.

[COON67] S. A. Coons, Surfaces for Computer-Aided Design of Space

Forms, Tech. report MAC-TR-41, Project MAC, MIT, NTIS AD No.

663-504, Cambridge MA, June 1967.

[deBO78] C. deBoor, A Practical Guide to Splines, Applied Mathematical

Sciences 27, Springer-Verlag, New York, 1978.

[DEIT82] P. H. Deitz, Solid Modeling at the US Army Ballistic Research

Laboratory, 2, pp. 949-960, Proceedings of the 3rd NCGA Conference,

13-16 June 1982.

[DEIT83] P. H. Deitz, Solid Geometric Modeling { The Key to Improved

Materiel Acquisition from Concept to Deployment, Defense Computer

Graphics 83, Washington DC, 10-14 October 1983.

[DEIT84a] P. H. Deitz, Modern Computer-Aided Tools for High-

Resolution Weapons System Engineering, DoD Manufacturing Technol-

ogy Advisory Group MTAG-84 Conference, Seattle WA, 25-29 November

1984.

[DEIT84b] P. H. Deitz, Predictive Signature Modeling via Solid Geome-

try at the BRL, Sixth KRC Symposium on Ground Vehicle Signatures,

Houghton MI, 21-22 August 1984.

[DEIT85] P. H. Deitz, The Future of Army Item-Level Modeling, Army

Operations Research Symposium XXIV, Ft. Lee VA, 8-10 October 1985.

[DEIT88] P. Deitz, W. Mermagen Jr, and P. Stay, \An Integrated En-

vironment for Army, Navy, and Air Force Target Description Support,"

Proceedings of the Tenth Annual Symposium on Survivability and Vul-

nerability, April 1988.

[GOOD89] Michael T. Goodrich, \Triangulating a Polygon in Parallel,"

Journal of Algorithms, vol. 10, 1989.

[GOUR71] H. Gouraud, \Continuous Shading of Curved Surfaces," IEEE

Transactions on Computers, vol. C-20, no. 6, pp. 623-628, June 1971.

[HARR82] R. F. Harrington, Field Computation by Moment Methods,

Krieger, Malabar, Florida, 1982.

72 Michael John Muuss and Lee A. Butler

[IEEE76] IEEE, IEEE Standard 521, Institute of Electrical and Electronic

Egnineers, Piscataway NJ, November 30, 1976.

[KAJI83] J. T. Kajiya, \New Techniques for Ray Tracing Procedurally

De�ned Objects," Transactions on Graphics, vol. 2, no. 3, pp. 161-181,

July 1983.

[KEDE85a] G. Kedem, Computer Structures and VLSI Design for Curve-

Solid Classi�cation, Siggraph '85 Tutorial \VLSI for Computer Graph-

ics", San Francisco CA, July 23, 1985.

[KEDE85b] G. Kedem and J. L. Ellis, Computer Structures for Curve-

Solid Classi�cation in Geometric Modeling, Siggraph '85 Tutorial \VLSI

for Computer Graphics", San Francisco CA, July 23, 1985.

[KIRK86] D. B. Kirk, \The Simulation of Natural Features Using Cone

Tracing," in Advanced Computer Graphics, ed. T. L. Kunii, pp. 129-144,

Springer-Verlag, 1986.

[LAGU89] G. Laguna, Recent Advances in 3D Finite Di�erence Mesh

Generation Using the BRL-CAD Package, pp. 21-35, BRL-CAD Sym-

posium '89, Aberdeen Proving Ground, MD, 24-25 October, 1989.

[LAID86] David H. Laidlaw, W. Benjamin Trumbore, and John F.

Hughes, \Constructive Solid Geometry for Polyhedral Objects," Com-

puter Graphics, vol. 120, no. 4, Proceedings of SIGGRAPH 86, Dallas,

Texas, August 1986.

[LANI79] J. H. Laning and S. J. Madden, \Capabilities of the SHAPES

System for Computer Aided Mechanical Design," Proc. First Annual

Conference on Computer Graphics in CAD/CAM Systems, pp. 223-231,

Cambridge MA, April 9-11, 1979.

[MAGI67] MAGI, A Geometric Description Technique Suitable for Com-

puter Analysis of Both Nuclear and Conventional Vulnerability of Ar-

mored Military Vehicles, MAGI Report 6701, AD847576, August 1967.

[MOLN87] Zsuzsanna Molnar, \Advanced Engineering/Scienti�c Graphic

Workstations," in Techniques for Computer Graphics, ed. D. F. Rogers,

R. A. Earnshaw, Springer-Verlag, 1987.

[MOOR84] J. Moore and R. Pizer (eds), Moment Methods in Electromag-

netics, Wiley, New York, 1984.

[MUUS87a] M. J. Muuss, \Understanding the Preparation and Analysis

of SolidModels," in Techniques for Computer Graphics, ed. D. F. Rogers,

R. A. Earnshaw, Springer-Verlag, 1987.

[MUUS87c] M. J. Muuss and P. Dykstra, K. Applin, G. Moss, E. Davis-

son, P. Stay, C. Kennedy, Ballistic Research Laboratory CAD Package,

Release 1.21, BRL Internal Publication, June 1987.

[MUUS88a] M. J. Muuss and P. Dykstra, K. Applin, G. Moss, P. Stay,

C. Kennedy, Ballistic Research Laboratory CAD Package, Release 3.0

{ A Solid Modeling System and Ray-Tracing Benchmark, BRL Internal

Publication, October 1988.

[MUUS90b] M. J. Muuss, Multiple Families of Engineering Analyses In-

terrogating a Single Geometric Model, Proceedings of the 8th ArmyMath

Combinatorial Solid Geometry, B-Reps, and Non-Manifold Geometry 73

Conference, Ithaca NY, 19-22 June 1990.

[OKIN78] N. Okino and et al., TIPS-1, '77 Version, Institute of Precision

Engineering, Hokkaido University, Sapporo Japan, March 1978.

[PELF86] John Pelfer, Georgia Tech Research Institute Radar Cross Sec-

tion Modeling Software, Modeling and Analysis Division, Georgia Tech

Research Institute, October 1986.

[RAPP76] J. R. Rapp, A Computer Model for Predicting Infrared Emis-

sion Signatures of An M60A1 Tank, BRL Report No. 1916, NTIS AD

No. B013411L, August 1976.

[RAPP83] J. R. Rapp, A Computer Model for Estimating Infrared Sensor

Response to Target and Background Thermal Emission Signatures, BRL

Memorandum Report ARBRL-MR-03292, August 1983.

[REQU82] A. A. G. Requicha and H. B. Voelcker, \Solid Modeling: A

Historical Summary and Contemporary Assessment," IEEE Computer

Graphics and Applications, vol. 2, no. 2, pp. 9-24, March 1982.

[REYN89] WilliamR. Reynolds, PRISM User's Manual Version 2.0, Ke-

weenaw Research Center, Michigan Technological University, Houghton,

MI 49931, October 1989.

[RITC78a] D. M. Ritchie and K. Thompson, \The UNIX Time-Sharing

System," Bell System Technical Journal, vol. 57, no. 6, pp. 1905-1929,

1978.

[RITC78b] D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W.

Kernighan, \The C Programming Language," Bell System Technical

Journal, vol. 57, no. 6, pp. 1991-2019, 1978.

[ROGE90] D. F. Rogers and J. A. Adams, Mathematical Elements for

Computer Graphics, 2nd ed., McGraw-Hill, New York, 1990.

[THOM84] S. W. Thomas,Modelling Volumes Bounded by B-spline Sur-

faces, PhD dissertation, University of Utah, June 1984.

[TOOM82] J. C. Toomay, Radar Principles for the Non-Specialist, Life-

time Learning Publications, London, 1982.

[WEIL85] Kevin J. Weiler, \Edge-based Data Structures for Solid Mod-

eling in Curved-Surface Environments," IEEE Computer Graphics and

Applications, vol. 5, no. 1, pp. 21-40, January 1985.

[WEIL87] Kevin J. Weiler, \The Radial Edge Structure: a Topological

Representation for Non-Manifold Geometric Modeling," in Geometric

Modeling for CAD Applications, ed. M. Wozny, H. McLaughlin, and J.

Encarnacao, Springer Verlag, December 1987.

